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Unavoidable variations in size and position of the building blocks of photonic crystals cause light scattering
and extinction of coherent beams. We present a model for both two- and three-dimensional photonic crystals
that relates the extinction length to the magnitude of the variations. The predicted lengths agree well with our
experiments on high-quality opals and inverse opals, and with literature data analyzed by us. As a result,
control over photons is limited to distances up to 50 lattice parameters ��15 �m� in state-of-the-art structures,
thereby impeding applications that require large photonic crystals, such as proposed optical integrated circuits.
Conversely, scattering in photonic crystals may lead to different physics such as Anderson localization and
nonclassical diffusion.
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The promise of full control over emission and propagation
of light has led to a widespread pursuit of photonic crystals
in recent years.1 Photonic crystals are dielectric structures in
which the refractive index varies periodically over length
scales comparable to the wavelength of light. For three-
dimensional periodicities, such crystals promise a photonic
band gap, i.e., a frequency range for which emission and
propagation of light are completely forbidden. Ideally,
photonic-band-gap crystals will form a backbone in which
many photonic devices, such as ultrasmall waveguides, cavi-
ties, and light sources, are combined to create optical inte-
grated circuits.2 This requires photonic crystals with negli-
gible optical extinction over millimeter distances.2

Tremendous progress has been made in the fabrication of
photonic-band-gap materials of the required high-refractive-
index materials,3–6 with low point and plane defect
densities.6 Structural variations in size and position of the
building blocks, however, are intrinsic to three- �3D� and
two-dimensional �2D� photonic crystals alike, amounting to
at least 2–7% of the lattice spacing in all current state-of-the-
art photonic crystals.3,7,8 While displacements are well
known in condensed matter,9 size polydispersity of indi-
vidual unit cell building blocks, including roughness, is in-
trinsic to metamaterials such as photonic crystals. All such
variations can ultimately be traced back to basic thermody-
namic arguments,9 but are at present probably limited by
materials science. These deviations from perfect periodicity
cause scattering, and hence exponential attenuation of coher-
ent beams propagating through photonic crystals over
lengths �, also known as the “�extinction� mean free path.”
After propagating over a distance �, a coherent light beam is
converted to a diffuse glow that corrupts the functionality of
any photonic integrated circuit. Conversely, short mean free
paths open up physics related to diffusion of light and ulti-
mately Anderson localization of light.10,11 Therefore, it is
crucial to obtain the relation between the extinction length �
and the structural disorder. In this paper, we derive such a
relation and test it against available experimental results.12

We consider extinction in photonic crystals due to scatter-
ing by size polydispersity and displacements from lattice
sites of the structural units �size r� that compose the unit cell

�lattice spacing a�. Light scattering is caused only by the
difference in refractive-index profile of the displaced, slightly
polydisperse building blocks as compared to the ideally or-
dered structure. As illustrated in Fig. 1, this difference is a
collection of thin shells of high- and low-index material. The
polydispersity and displacements of the building blocks
translate linearly into the shell thickness �r. Since in many
photonic crystals, such as cubic �3D� or hexagonal �2D�
structures, light transport is isotropic, we treat the ideal crys-
tal as an effectively homogeneous medium with index neff
equal to the volume-averaged refractive index.13 Within this
framework, the inverse extinction length

1

�
= ��RayleighF �1�

is the product of three factors:14 Rayleigh’s extinction cross
section �Rayleigh of each shell, the number density of shells �,
and a wavelength-dependent geometrical factor F which em-
bodies corrections beyond Rayleigh scattering.15 Since the
volume of each shell is proportional to its thickness �r,
Rayleigh’s extinction cross section is proportional to
�m−1�2�r2, where m is the index contrast relative to the
background medium. Even though scattering by each shell is
generally weak, the huge density � set by the number of
structural units per unit cell causes the scattering mechanism
to be important. For Rayleigh scatterers, in the low-
frequency limit, the dimensionless factor F equals unity. For
weakly scattering shells, the Rayleigh-Gans approach is
suited to find F.14,15

We now focus on the extinction length in 3D photonic
crystals that consist of spheres �mean radius r�, such as opals
and inverse opals where many data are available. Size poly-
dispersity results in scattering due to thin spherical shells
with a Gaussian distribution of thicknesses. The inverse ex-
tinction length � scales quadratically with the size polydis-
persity �r and with m−1, since Rayleigh’s extinction cross
section for a shell of thickness �r reads �Rayleigh= �32� /3�
��m−1�2keff

4 r4�r2 �cf. Ref. 14�, with keff the wave vector in
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the effective medium. We find that the Rayleigh-Gans
correction14

F�keffr� � 0.78
1

�keffr�2 �1 + 0.09keffr� �2�

reduces the well-known fourth-power Rayleigh increase of
extinction to a nearly quadratic dependence on wave
vector.16 We have checked the validity of our result using the
exact Mie solution for spherical shells. Although for m�2
and keffr�1 the Rayleigh-Gans result underestimates the ex-
tinction loss compared to Mie theory, the Mie model repro-
duces the quadratic scaling with frequency and shell thick-
ness. Our model captures the effect of both polydispersity
�r /r and displacements �u /r: calculations of F show that
both effects are similar in magnitude, and can be combined
by taking an effective shell thickness �r+0.5�u. From now
on, �R indicates effective shell thicknesses normalized by the
shell radius. An essential result of our paper is that given the
current fabrication accuracies of �R�5%, the maximum ex-
tinction length � is only 50 lattice spacings in high-index
crystals at relevant frequencies.

Enhanced backscattering measurements obtained earlier
by us have allowed us to determine the mean free path15 � in
synthetic opals, i.e., fcc crystals of close packed polystyrene
spheres with n=1.59 and neff=1.45.17 In Fig. 2�a�, we plot �
for a wide normalized frequency range, obtained with 	
=632, 685, and 780 nm, and many different a. We see that �
decreases from 100a for frequencies below first-order dif-
fraction, to 5a at the highest frequencies, where we have
converted the wave vector from the scattering model to the
frequency scale a /	 typical of photonic crystals. The data
and our model agree well on both the observed decrease of �
with a /	 and the magnitude of �, which confirms that ex-
tinction is due to nonuniformities and displacements of the
spheres, assuming �R=5%. This value matches well with the
cumulative effect of polydispersity �2% and rms displace-
ments of spheres from their lattice sites �
3.5% of the
nearest-neighbor distance�, as independently determined by
small-angle x-ray scattering.18 In contrast, the data refute the
often assumed Rayleigh �4 dependence.4,19 The degree of
extinction is also inconsistent with the common assumption
that scattering is due to point defects, e.g., missing spheres:

From the cross section of a sphere14 we calculate that the
observed scattering would require a density of missing
spheres larger than 0.13a−3, an order of magnitude larger
than the estimated density6,19 0.01a−3.

We have carried out experiments to probe scattering
losses in photonic crystals with high photonic interaction
strength, i.e., inverse opals in a TiO2 backbone. The strength
of the interaction of a photonic crystal with light is gauged
by the relative bandwidth S of the lowest order gap in the
dispersion relation �see Ref. 1, p. 194�. The generally pur-
sued large interaction strengths require a large index contrast
nhigh/nlow and are thus associated with stronger scattering,
due to the factor �m−1�2 in Rayleigh’s cross section. While
the magnitude of the nonuniformities is similar to those in

FIG. 1. �Color� �Schematic� Any 2D or 3D real photonic crystal
is an ordered stack of building blocks with a spread �r in their
average radius r, each slightly displaced �displacement �u� from
the lattice sites. The real structure is the sum of the perfect crystal
and the difference between the real and perfect structures. This
difference is a collection of thin shells that each scatter weakly. Due
to their high number density, the shells dominate the scattering loss.

FIG. 3. �Color� Universal dependence of extinction length on
interaction strength S in photonic crystals. Dashed curves, extinc-
tion calculated for fcc inverse opals �assuming 26% high-index ma-
terial�. Symbols, our data ���, and literature data analyzed by us
���. Observed losses are consistent with �R�4%. If � is shorter
than the length needed for Bragg diffraction, structures are essen-
tially disordered �shaded red�. Complete band gaps are expected for
S�15% �shaded green�. Photonic-crystal integrated circuits require
� /a�104 at S�15%, beyond current state of the art.

FIG. 2. �Color� Symbols, mean free path �Ref. 15� � in units of
a versus normalized frequency a /	 in polystyrene opals �a� and
titania inverse opals �b�. Open symbols in �b� were obtained by
averaging for each a /	 total transmission spectra for many samples
with different a. The blue shaded area indicates the standard devia-
tion. In the stop gap �orange bar�, total transmission is reduced in
excess of � /L due to Bragg reflection of the input beam. This af-
fects the data in this limited range. Previous data show that � is
unaffected if the frequency is tuned through a gap �Ref. 17�. In both
�a� and �b�, the extinction length agrees well with the model �1� and
�2� with �R�5% �red curves�. Green curves represent scaling of �
with �−4, and illustrate the failure of Rayleigh scattering models.
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the direct opals,3 the inverse opals present a much larger
index contrast n=2.7±0.4 �neff�1.18�. We have determined
the frequency dependence of � from total diffuse transmis-
sion �T=� /L, with L the sample thickness15�. We used white-
light Fourier transform spectroscopy to cover a wide normal-
ized frequency range for many samples with a
=650–930 nm. To obtain the absolute magnitudes of the
mean free paths we calibrated our measurements by measur-
ing the absolute values of the transmission �closed symbols�
and using enhanced-backscattering data.17 Figure 2�b� shows
that � decreases from 100a at a /	=0.4 to only 4a at a /	
=1.6. This decrease of � for the inverse opals is in excellent
correspondence with our prediction �solid curve�, taking a
nonuniformity �R=4% that is consistent with independent
structural data.3

To further test the validity of our model, we have ana-
lyzed transmission data reported in many papers encompass-
ing fcc and bcc photonic crystals, with sphere volume frac-
tions from 
=0.7–74% and index contrasts nhigh/nlow from
1.05 to 1.5.19–25 Extinction causes the coherent-beam trans-
mission outside stop gaps to decrease according to Lambert-
Beer’s law Tcoh=e−L/�. In all cases, except of course for the
dilute crystal,22 fitting a power-law dependence ���−x to
each data set shows that extinction does not increase accord-
ing to Rayleigh’s law. Indeed, Table I shows that we find
exponents x�4 in reasonable correspondence to the expo-
nents predicted by our model in the same frequency win-
dows. Similar exponents were recently also observed in Ref.
26. Fits to our model further show that extinction lengths for
the wide range of crystals agree with �R�4%, consistent
with typical sphere polydispersities and displacements of
2–5 %, as reported in Table I. The quantitative agreement of
� with Eqs. �1� and �2� confirms that polydispersity and dis-
placements of unit cell building blocks determine scattering
loss in 3D photonic crystals.

Given the success of our model, we can now use it to
infer the general dependence of the extinction length � /a on
the photonic interaction strength S and the nonuniformity �R.
In Fig. 3 we present both � /a and S that are calculated as a
function of index contrast �m−1�. It is clear that the extinc-
tion length decreases both with increasing photonic strength
and with increasing structural disorder. We also present the
experimental extinction data from Table I for fcc opals and
inverse opals, showing again a good agreement with our
model with �R�4%. A photonic band gap requires interac-
tion strengths beyond S=0.15; extinction lengths less than 20
lattice spacings are expected at the current level of fabrica-
tion accuracy. Ultimately, one hopes to realize photonic crys-
tals that combine many optical functions. Recent technology
roadmaps foresee crystals containing �104 optical functions
per mm2 �Ref. 2, p. 245�, requiring negligible loss over more
than millimeter distances. From the general scaling of extinc-
tion with nonuniformity we conclude that applications of
photonic-band-gap crystals in circuits require a formidable
tenfold increased perfection in statistical fabrication accuracy
to �R�0.25%, or subnanometer precision. Such an improve-
ment is far beyond the current state of the art.1,2

Although 3D photonic crystals potentially offer the best
platform for photonic crystal functionality, 2D photonic crys-
tals possess many of the desired properties with the advan-
tage of ease of fabrication. While the fabrication methods
are radically different, 2D photonic crystals suffer from
polydispersity and displacements of their unit cell building
blocks analogous to 3D crystals.7,8 To obtain the scattering
losses, we consider 2D crystals of infinitely long cylinders.
Now, Rayleigh’s cross section per unit length �Rayleigh
= �3�2��m−1�2keff

3 r2�r2 of thin cylindrical shells of thickness
�r and radius r increases with the cube of the optical
frequency.14 In the relevant range of cylinder radii, the
Rayleigh-Gans model causes the �−3 dependence of � in the
Rayleigh limit to be reduced to �−2.2 since16

TABLE I. Photonic interaction strength S, structure, and extinction in 3D photonic crystals.

Reference S nsphere �ninter�a r /a � /ab xexpt �xRG�c �Rd

22e 0.7% 1.59 �1.33� 0.116f 105 4 �3.3� 12%

21e �1% 1.42 �1.48� cpg 3000 3 �2.6� 6%

20e 1.6% 1.59 �1.33� 0.143 1000 3.3 �3� 15%

19e 2% 1.32 �1.47� cp 700 2.6 �2.6� 6%

24e 3% 1.59 �1.33� cp 100 
2 �2.5� 7%

25h 5% 1.41 �1.0� cp 17 9%

23e,i 5.5% 1.45 �1.0� cp 2.6 �2.4�
Fig. 2�a�h 7% 1.59 �1.0� cp 50 1.8 �2.4� 5%

Fig. 2�b�i 11% 1.0 �2.7� cp 40 2.6 �2.5� 4%

ansphere �ninter� refractive indices of spheres �background medium�.
bThe � /a are for a /	 in the first stop gap.
cDecay powers x obtained by fitting ���−x to the data �xexpt� �model Eqs. �1� and �2� in the same frequency
range �xRG��.
dEffective shell radii that best fit the data over the full available frequency range.
eTransmission.
fbcc instead of fcc.
gcp=close packing, r /a=1/�8.
hEnhanced backscattering.
iDiffuse total transmission.
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F�keffr� � 0.488�keffr�−0.8. �3�

For a hexagonal lattice of air cylinders in silicon with r /a
=0.45, typical for macroporous silicon crystals,27 we find �
�40a for frequencies near lowest-order stop gaps, assuming
a nonuniformity �R of 5%. A much larger � is required for
integrated circuit applications.

Many efforts currently focus on quantifying losses in 2D
crystals made from high-index slabs on lower-index cladding
layers, for which the nonuniformity �R is around 5%.1,7,8

Although the guided wave profile normal to the slab is not
incorporated in our model, we believe that Eq. �3� yields a
reasonable estimate of scattering due to nonuniformity of the
air holes in such structures. Similar to 3D, applications that
rely on large structures, such as 2D photonic crystal inte-
grated circuits, require a considerable increase in fabrication
accuracies beyond the current state of the art.1,2 These scat-
tering losses add to widely studied out-of-plane scattering
that is intrinsic to some 2D crystal designs, even if perfectly
fabricated.28 In contrast to out-of-plane loss, however, statis-
tical variations cannot be reduced by design optimization.

Scattering in photonic crystals opens opportunities to ex-
plore new phenomena in multiple scattering of light.11 Pho-
tonic crystals allow unique control over fundamental aspects,
such as the transport velocity or anisotropies of light diffu-
sion. A fascinating application is the possibility to localize
light, which could serve to enhance nonlinear interactions.10

According to the usual Ioffe-Regel criterion, Anderson local-
ization occurs when the mean free path is so strongly re-
duced that its product with the wave vector equals one: k�
�1. It has been proposed that in photonic crystals this chal-
lenging criterion is relaxed to k��1/��s, with �s the modi-
fication of the photonic density of states �DOS� relative to
free space.29 Since the DOS is strongly reduced in photonic
gaps, localization of light may even be feasible with the rela-
tively long mean free paths predicted by our model.
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