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We study theoretically the spontaneous emission rate of a two-level quantum emitter in any nanophotonic
system. We derive a general representation of the rate on the orientation of the transition dipole by only
invoking symmetry of the Green function. The rate depends quadratically on orientation and is determined by
rates along three principal axes, which greatly simplifies visualization: emission rate surfaces provide insight
on how preferred orientations for enhancement �or inhibition� depend on emission frequency and location, as
shown for a mirror, a plasmonic sphere, and a photonic band-gap crystal. Moreover, insight is provided on
means to “switch” the emission rates by actively controlling the orientation of the emitters’ transition dipole.
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I. INTRODUCTION

It is well known that the characteristics of spontaneously
emitted light depend strongly on the environment of the light
source �1–4�. According to quantum electrodynamics, the
emission rate of a two-level quantum emitter, described by
Fermi’s golden rule, is generally factorized into a part de-
scribing the sources’ intrinsic quantum properties and an-
other part describing the influence of the environment on the
light field. Currently, there are many efforts to control the
emission rate of quantum emitters by optimizing the nano-
scale environment by, e.g., reflecting interfaces �1,5�, micro-
cavities �6,7�, photonic crystals �8–11�, or plasmonic
nanoantennae �12–14�. Control of spontaneous emission is
notably relevant to applications, including single-photon
sources for quantum information, miniature lasers and light-
emitting diodes, and solar energy harvesting �15–17�.

The effect of the environment of a source on its emission
rate is described by the local density of optical states �LDOS�
�4,9,11�. The LDOS counts the number of photon modes
available for emission and it is interpreted as the density of
vacuum fluctuations. In many experimentally relevant cases,
it is theoretically known that emission rates strongly differ
for various orientations of the transition dipole moment see,
e.g., �4,18�. Thus, the widely pursued control of position and
frequency leaves a large uncertainty in the emission rate �9�.
To date, no clear picture has emerged of the general charac-
teristics of the orientation dependence. It is an open question
whether the behavior mimics the local symmetry around the
emitter, see Fig. 1, or whether any generic dependence exists
at all.

Therefore, we present fundamental insights in the com-
plex dependence of the emission rates of a quantum emitter
on the orientation of its dipole moment. Our general, yet
simple theoretical analysis only invokes the symmetry of the

Green function and provides a complete classification of the
orientation dependences that the emission rate can assume in
any nanophotonic system. This classification leads to an in-
tuitive visualization that is based on only a few clearly de-
fined physical parameters, as shown by examples of an emit-
ter near a mirror, a plasmonic sphere, or in a three-
dimensional �3D� photonic band-gap crystal. From our
analysis, we conclude that control over the orientation of the
transition dipole moment opens novel applications: if one
can tune the orientation of an emitter, one can “switch” emis-
sion from inhibited to enhanced and vice versa. In the field
of quantum information �19�, atomic qubits that come close
to nanophotonic systems could acquire controllable phase
shifts by tuning their orientation relative to the principal axes
of the nanophotonic systems.

II. THEORY

A. Derivation of emission rate surface

The rate of spontaneous emission � of a two-level dipolar
quantum emitter in the weak-coupling approximation is
equal to �4,9,11�:
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FIG. 1. �Color online� Drawing of a two-level quantum emitter
embedded in an arbitrary nanophotonic system, here depicted as a
cluster of six scatterers �left�. If the emission rate were to mimic the
symmetry of the system, one would here expect an emission rate
surface with a sixfold symmetry �right�. Our analysis reveals, how-
ever, that these surfaces take on only specific shapes determined by
the symmetry of the Green dyadic. The symmetry analysis allows
one to conclude without any calculation that the rate is identical for
all dipole orientations in the plane of the six scatterers.
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��r,�,ed� =
�d2�

��0
N�r,�,ed� , �1�

with � the emission frequency, r the source’s position, ed the
dipole orientation, d the modulus of the matrix element of
the transition dipole moment. N�r ,� ,ed� is the LDOS that
equals:

N�r,�,ed� =
6�

�c2 �ed
T · Im�G�r,r,��� · ed� , �2�

with G�r ,r ,�� the Green dyadic �4�. Equation �1� reveals the
well-known fact that the emission rate depends on the fre-
quency and the position of the emitter. As is well known, Eq.
�2� is also applicable to emission dynamics inside dissipative
optical media. In such media, the imaginary part of the
Green dyadic describes the total decay rate, i.e., the sum of
the radiative decay rate and the rate of quenching induced by
the environment. Hence, the results in this paper carry over
straightaway to the decay dynamics of dipoles emitters in
dissipative nanophotonic environments.

A didactic example to illustrate the dependence of emis-
sion rates on frequency, position, and dipole orientation is
that of a source near a perfect mirror, see Fig. 2�a�, which
can be understood from image dipole analysis �1,3�. The rate
depends strongly on the dipole orientation ed: at small dis-
tances a dipole parallel to the mirror has a vanishing emis-
sion rate, which can be interpreted as due to destructive in-

terference of the dipole with its oppositely oriented image. In
contrast, a dipole perpendicular to the mirror has twice the
unperturbed rate owing to constructive interference, as
shown in Fig. 2�b�. Clearly, the symmetry of this particular
geometry implies that the parallel and perpendicular dipole
orientations are “principal” orientations along which the
maximum and minimum rates are attained. At intermediate
orientations the rate is a weighted average of the two rates.

The main result of our paper is that the rate always de-
pends on orientation via a quadratic form with three perpen-
dicular principal axes, as will now be proven: on account of
reciprocity, the Green dyadic is equal to its transpose upon
exchanging the coordinates. Hence,

Im�G�r,r�,���T = Im�G�r�,r,��� . �3�

Evidently, the imaginary part of the Green dyadic in Eq. �2�
is a real and symmetric 3�3 matrix. Consequently, at each
frequency � and spatial position r, the imaginary part of the
Green dyadic can always be diagonalized, and has three ei-
genvalues �g1 , g2 , g3� that correspond to three orthogonal
eigenvectors. Since the eigenvalues can be ordered by mag-
nitude, we relabel the eigenvalues and the concomitant main
axes as �vmin,vmed,vmax�. This basis corresponds to three per-
pendicular principal dipole orientations that vary with dipole
location r and frequency �. In this orthonormal basis we
express the dipole orientation unit vector ed as:

ed = 	1vmin + 	2vmed + 	3vmax, �4�

where 	i are coefficients that are constrained through 	1
2

+	2
2+	3

2=1 to lie on a unit sphere, since �ed�=1. Clearly,
the coefficients 	i are functions of the dipole orientation:
	i=	i�ed�=ed

T ·vi.
Using Eqs. �1� and �2�, the emission rate � can be ex-

pressed in emission rate coefficients �i, which are the rates
for dipole orientations parallel to the principal axes vi, lead-
ing to:

��ed� = 	1
2�ed��min + 	2

2�ed��med + 	3
2�ed��max. �5�

Equation �5� describes the emission rate surface as a function
of dipole orientation ��ed�, which is a central result of our
work. The emission rate coefficients �i are equal to:

�i =
�d2�

��0

6�

�c2 �vi
T · Im�G� · vi� =

�d2�

��0

6�

�c2gi, �6�

and are via G functions of the frequency and the dipoles’
position: �i=�i�� ,r�. Assuming known principal rates �i,
the emission rate surface ��ed� is always a quadratic form on
the unit sphere. Moreover, only quadratic forms of signature
s=��sgn��i��=3 can occur �20�, since emission rates are
physically constrained to be positive for all orientations.
Therefore, polar plots of the rate versus dipole orientation—
henceforth called emission rate surface—take on only spe-
cific shapes classified by the ratios of �min, �med, �max,
with three perpendicular symmetry axes, regardless of the
nanophotonic system. We remark that while Eq. �5� may ap-
pear as the defining equation of an ellipsoid, the emission
rate surface is not an ellipsoid since the problem is not about
calculating a level surface of Eq. �5�, which would be
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FIG. 2. �Color� �a� Drawing of a two-level quantum emitter at
distance h above a mirror. �b� Spontaneous emission decay rate
versus scaled distance �wave vector times distance kh� for a dipole
perpendicular and parallel to a perfect mirror �3�. The rate has been
normalized to the one at infinite distance. �c� Three-dimensional
surfaces representing the orientation dependent spontaneous emis-
sion rate in real space. �i� One maximal emission and two equal
minimal rates give a peanut-shape �at kh=0.4 in �b��. �ii� Two equal
maximal rates and one minimal rate give an oblate spheroid �kh
=2.3 in �b��. �iii� Three equal maximal rates give a sphere �kh
=3.2 in �b��. �d� Most general shape when all principal rates are
different ��max
�med
�min� and the principal axes are rotated
from the �x ,y ,z� axes. Color scales are linear from �min to �max

�colorbar in �c��.
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equivalent to constraining 	i to yield a fixed � in Eq. �5�,
rather than constraining 	i to the unit sphere. Our result that
emission surfaces are always necessarily quadratic forms de-
fies the intuition �as sketched in Fig. 1� that emission rates
inherit the symmetry of the nanophotonic system.

Regarding the assumptions we require to arrive at the
quadratic form for the emission rate surfaces, we note that
we have assumed real dipole moment in Eq. �2� �following
Ref. �4�� and that we used reciprocity to ensure real and
symmetric Im�G�r ,r��. In case of reciprocal media it is easy
to show that our results are also valid for complex transition
dipole moments, and not just for real dipole moments. Fur-
thermore, if we assume a real dipole moment, it appears that
our results are also valid for metamaterials that violate reci-
procity, i.e., in case Im�G�r ,r�� is not symmetric or even not
diagonalizable. Since Im�G�r ,r�� is still real it will nonethe-
less give rise to a quadratic form that can be transformed to
a principal axis system �20�. The physical requirement that
rates are positive for all dipole orientations furthermore en-
sures that the signature of the quadratic form remains three
even in the nonreciprocal case.

B. Generic shapes of the emission rate surface

Figures 2�c� and 2�d� categorize all possible shapes of the
emission rate polar plot. Figure 2�c� is relevant for the mir-
ror, with principal axes parallel �x , y, degenerate� and per-
pendicular �z� to the interface. Figure 2�c��i� shows the emis-
sion rate surface for the case where emission is enhanced
along a single dipole orientation �max��min=�med. This
situation appears at a reduced distance kh=0.4 close to the
mirror. Here, the emission rate surface looks like a highly
anisotropic peanut, constricted to a radius �min in the x , y
plane, and extending to �max along the z axis. Figure 2�c��ii�
shows the orientation-dependent emission rate for a single
inhibited axis with �min��med=�max, at kh=2.3 near a mir-
ror. Qualitatively, the emission rate surface resembles an ob-
late spheroid; when the minimum rate is much less than the
other two rates �see, Fig. 5 below�, the surface develops a
concave indentation with a donutlike shape. Figure 2�c��iii�
shows the emission rate surface when the rate is equal along
all three main axes �kh=3.2�. The emission rate surface is
simply a sphere, as it is in any isotropic homogenous me-
dium.

Figure 2�d� shows the emission rate surface for the most
general case when �i� the rates along the main axes are all
different ��min�med�max�, and �ii� the principal axes
vmin,med,max have an arbitrary orientation with respect to the
laboratory frame. Clearly, the emission rate is not extremal
for a dipole parallel to any of the �x ,y ,z� axes. An important
feature of the emission rate surfaces is that they allow for an
easy inspection of both the anisotropy of the emission rates,
and of the favorable dipole orientations compared to the
usual �x ,y ,z� axes in real space.

III. EFFICIENT METHOD TO CALCULATE EMISSION
RATE SURFACES

In many cases of practical interest, neither the Green’s
function G nor the principal axes �vi� are a priori known.

Often algorithms based on a summation over all photon
modes are used that only yield the rate � for target orienta-
tions ed chosen as a priori input. Reconstructing emission
rate surfaces as in Fig. 2 by a dense sampling of orientations
is not viable with such algorithms, due to prohibitive com-
putation times. An illustrative example is the calculation of
emission rates in photonic crystals that requires a summation
over up to 106 Bloch modes, the calculation of each of which
requires the diagonalization of a 103�103 matrix, even for a
single dipole orientation �11,22�. A popular alternative
method that can conveniently yield the emission rate for a
single orientation is the finite difference time domain
�FDTD� simulation method �23�. However, it appears diffi-
cult to calculate off-diagonal elements of the Green tensor.
Since the various field components are not calculated on
identical grid points, FDTD does not truly yield a Green
dyadic on a well-defined position r. Hence, even if an algo-
rithm is known to calculate rates at fixed orientations, it is
unclear how to find the principal axes and rates, since Im�G�
is simply not available for diagonalization. In view of the
computational cost of evaluating the radiative rate at a single
dipole orientation, the main problem is to find out for how
many and for which orientations the emission rate must be
calculated to completely and exactly characterize the emis-
sion rate surfaces. Here we describe an efficient method to
find principal emission rates and orientations by evaluating
the LDOS at the least possible number of input orientations.

We use the well-known fact that any function on the unit
sphere is conveniently expanded in spherical harmonics
Ylm�� ,��= Plm(cos���)eim�. Since the emission surface is a
quadratic form, we can apply the well-known fact that all
quadratic forms on the unit sphere can be represented exactly
by an expansion containing only terms up to l=2, so that

��ed� = �
l=0

2

�
m=−l

l

almPlm„cos���…eim� �7�

An easy proof that no terms beyond l=2 are needed is ob-
tained by expressing the spherical harmonics in terms of Car-
tesian coordinates, rather than polar coordinates on the unit
sphere �20�, or conversely by expressing the coefficients 	i
in terms of polar coordinates relative to the �vi� axis system.
This substitution leads to a trigonometric expansion for ��ed�
with terms that are quadratic in cosines and sines of � and of
�, see Appendix, Eq. �A1�.

The expansion coefficients for the spherical harmonic ex-
pansion are given by inner products

alm = 	��ed�,Ylm
 = �
0

2�

d��
0

�

d���ed�Ylm��,��sin��� ,

�8�

similar to the coefficients appearing in discrete Fourier trans-
formations, but now for transformation on the unit sphere.
Mohlenkamp has developed a fast Fourier transform method
to calculate the coefficients numerically �24�, which requires
a sampling of rates � at a discrete set of orientations, similar
to the numerical evaluation of discrete Fourier coefficients
by the sampling of a periodic function on a discrete set of
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points. In this approach, the integral expression �8� for the
expansion coefficients for expanding a function f is replaced
by a discrete weighted sum:

âlm = �
k

wkf��k,�k�Ylm��k,�k�sin��k� , �9�

where k runs over the finite set of sampling points. Such a
discrete approximation to the expansion coefficients alm is
exact for all functions f that are exactly equal to a finite
series of spherical harmonics up to order lmax if: �i� the
angles ��k ,�k� are chosen as the roots of the basis functions
of order l= lmax+1, and �ii� the wk are appropriate weights. In
the present case lmax=2. Thus the special points are the 18
roots of the spherical harmonics Yl,m�� ,�� of order l=3. Fur-
thermore, one may appreciate that the spherical harmonic
transform is a simple Fourier transform over �, and a Leg-
endre transform over cos �. The weights wk are hence the
weights appropriate for Gauss-Legendre quadratures of order
3. Explicitly, the 18 special points occur at azimuthal angles
�=m� /3 �m=0,1 , . . .5� and at polar angles �
=arccos��3 /5� ,� /2,arccos�−�3 /5�. The weights w only de-
pend on �, and are 5/9 for �=arccos���3 /5� and 8/9 for �
=� /2. Since one half of the 18 points �see Fig. 3� is antipo-
dal to the other half, inversion symmetry of the emission rate
means that the rate need only be evaluated for 9 dipole ori-
entations in order to find the full spherical harmonic expan-
sion.

IV. RESULTS FOR SEVERAL NANOPHOTONIC
EXAMPLES

To illustrate our analysis, we discuss the emission dynam-
ics of a quantum emitter inside a photonic crystal, illustrated
in Figs. 4�a� and 4�b�. These complex systems have extreme
variations of the emission rate versus frequency on account
of a bandgap where emission is completely inhibited �8�. To
obtain the rate for an emitter of arbitrary orientation in a Si
inverse opal, we have calculated the LDOS for the nine spe-
cial orientations by summing over all Bloch eigenmodes
�25�. The crystal has a first order “pseudogap” at reduced
frequency 0.55, and a photonic bandgap from 0.852 to 0.891.
Figure 4�b� shows the emission rate for a salient position in
the unit cell �cf. Fig. 4�a��: the rate is anisotropic for frequen-
cies near the pseudogap, since it differs for dipoles pointing
in either x , y or the z direction, which are the cubic symme-
try axes of the crystal. One might be tempted to perceive the
behavior to be as simple as a mirror, since it is the same for
both x and y. However, a plot of the maximum, medium, and
minimum emission rates �Fig. 4�c�� shows that this percep-
tion is completely wrong: Already at low frequency up to the
pseudogap, the emission rate is strongly anisotropic. While
anisotropic behavior in the long-wavelength limit may seem
surprising, its origin in electrostatic depolarization effects
has been discussed before �26,27�. The maximum rate occurs
for dipole orientation ed= �−1,1 ,0� /�2, and is much larger
than the rate for any of the x , y , z orientations, whereas the
minimum rate for ed= �1,1 ,0� /�2 is much smaller. At high
frequency �a /�
0.6� up to the bandgap, the orientation of
maximum rate changes to ed= �0,0 ,1�. While it is clear from
Fig. 4�c� that the orientation-dependent emission rate is
much more complex than expected from �B�, Fig. 4�c� hardly
gives an intuitive picture of the orientation-dependent behav-
ior.

Therefore, we plot in Fig. 4�d� emission rate surfaces ver-
sus frequency. At frequencies below the pseudogap, the
emission rate surface is peanutlike, revealing that the emis-
sion rate is high for a “horizontal” dipole orientation, and
inhibited for the two perpendicular orientations. At the
pseudogap, the emission rate surface suddenly changes to
donutlike, since the rate is high for two orientations and low
for a third orientation. At even higher frequencies, the emis-
sion rate surface becomes again peanutlike—with donutlike
behavior near 0.8—but with a different orientation than be-
low the pseudogap. The maximum emission rate is up to
20-fold enhanced, and the anisotropy ��max /�min� is strong
with peaks up to 340. In this particular example, the high
symmetry at this spatial position fixes all principal axes. To
demonstrate the applicability of our method to general non-
symmetric cases we have also studied low-symmetry posi-
tions at constant frequency, see Fig. 4�a�. Again strong
anisotropies occur, with the maximum-emission axis �or in-
hibition axis� continuously changing direction as a function
of source position. We conclude that emission rate surfaces
provide a compact representation of the rich behavior of the
dependence of the emission rates on dipole orientation.

We emphasize that our classification of emission dynam-
ics by means of emission rate surfaces is by no means re-
stricted to dielectric systems and can also be applied to dis-
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FIG. 3. �Color online� Special orientations, i.e., points on the
unit sphere, for which the decay rate needs to be calculated in
order to fully reconstruct emission rate surfaces. The red circles
and blue crosses together are the roots of l=3 spherical
harmonics, corresponding to �=m� /3 �m=0,1 ,2 , . . .5� and
�=arccos��3 /5� ,� /2,−arccos��3 /5�. Due to inversion symmetry,
rates are equal for antipodal orientations. This makes calculations
for half the points �e.g., the blue crosses� superfluous, leaving nine
distinct orientations �red circles� for which rates must be calculated
in order to find principal rates and orientations. Note that these
points do not have equal weights in Eq. �9� �weight is 8/9 for points
on the equator and 5/9 for other points�.
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sipative nanophotonic systems that are of modern interest,
such as plasmonic and metamaterial structures. Our analysis
rests purely on the symmetry of the Green dyadic in Eq. �2�,
which in the presence of optical absorption describes the
total decay rate �radiative rate plus induced nonradiative rate�
of a quantum emitter. As an example, we discuss the text-
book case of an emitter near a plasmonic sphere �28,29�,
using the known Green’s function �30� �cf. Fig. 5�a��. Figure
5�c� shows that the emission rate surface for the total decay
rate has a donutlike shape ��min��med=�max� with 16-fold
enhanced rates for a dipole parallel to the surface, and five-
fold enhanced for a perpendicular dipole. For a fixed dipole
orientation �4,18�, the angular distribution of the radiated
power reveals a well-known five-lobed structure �B�. A com-

parison of �B� and �C� illustrates the main differences be-
tween radiation patterns and emission rate surfaces: radiation
patterns are relevant to a single dipole orientation and do not
necessarily have any symmetry, or are free to follow any
symmetry inherent in the environment. Emission rate sur-
faces on the other hand are relevant to all orientations and
have a symmetry limited by the quadratic form.

V. DISCUSSION

Since the analysis in this paper is based on Im�G�r ,r�� it
is strictly valid for the total decay rate modification induced
by the nanophotonic environment. Explicitly, in the case of
losses our proof only holds for the sum of the radiative rate
and the nonradiative rate ��rad+�nonrad�, and not for the ra-
diative rate �rad separately. To analyze the radiative emission
rate surfaces one would need to analyze the far-field integral
of the radiated power �quantity in Fig. 5�b�� as a function of
the source orientation. A priori it is not at all clear that such
radiative rate surfaces need have a quadratic form. Indeed,
we have not succeeded in proving the quadratic form for the
radiative rate in the lossless case by analysis of far-field in-
tegrals, i.e., without identifying �rad=�tot and subsequently
analyzing Im�G�r ,r��. We have numerically calculated radia-
tive emission rate surfaces for many low-symmetry dissipa-
tive plasmon sphere clusters, and have not found any ex-
ample in which the radiative emission rate surface was not
quadratic. Although a rigorous proof is beyond the scope of
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FIG. 4. �Color� Emission rate for a quantum emitter in a photonic band-gap crystal. �a� Left: 1/8th of a cubic unit cell, blue dashed lines
delimit the primitive cell. Right: emission rate surfaces on x=0.2, y=0.3, variable z �red line in left panel� at reduced frequency a /�
=0.94 �a is lattice parameter�. Surfaces are colored by relative rate �scalebar on right�, and have constant size. �b� Emission rate for dipole
centered in a window of a Si inverse opal �r=1 /4�1,1 ,0�, black dot in �a�� with orientations ed= �1,0 ,0�, �0,1,0� �black curve�, and �0,0,1�
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ed= �−1,1 ,0� /�2 �full curve�, �0,0,1� �dashed-dotted�, �1,1 ,0� /�2 �short dots�. �d� Emission rate surfaces at select frequencies show strong
changes in shape. The size of the surfaces is in proportion to the absolute emission rates, and colorscales range from �min to �max. Dashed
curve: �max.

6

8

10

12

14
16

0

0.05

0.10

0.15

Γtot
Γvac

P
(Ω

)(sr -1)

(A) (B) (C)

FIG. 5. �Color� �a� Drawing of a two-level quantum emitter at
20 nm distance from a plasmonic Ag sphere �21� with radius R
=80 nm. �b� Angular distribution of the radiated power versus solid
angle � for a single dipole orientation parallel to the surface; the
pattern has a complex five-lobed structure. �c� Emission rate surface
showing the emission rate versus dipole orientation. The pattern has
a donutlike shape.
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this paper, we therefore anticipate that the quadratic form not
only holds for total decay rates, but also for radiative decay
rates.

A class of quantum emitters with a single transition dipole
moment is fluorescent molecules such as laser dyes �4,31�.
For such emitters, emission rate surfaces can be observed if
their orientation is controlled, e.g., by attaching them to liq-
uid crystal molecules that are oriented in external fields �32�.
If one can tune the orientation of an emitter, this opens a
novel opportunity to “switch” spontaneous emission from
inhibited to enhanced and vice versa. The emission rate sur-
faces reveal that optimal switching always requires a dipole
rotation by 90°, since minimal and maximal emission rates
always occur along the mutually perpendicular main axes.
Alternatively, one could tune semiconductor nanowires with
oriented dipole moments. For self-assembled and colloidal
quantum dots with dipoles in a x� , y� plane, we expect to
probe the x� , y� cross-sectional average of the emission rate
surface of the relevant nanophotonic system.

Since arbitrary orientations do not usually coincide with
principal dipole orientations, most prior work on specific
systems has been incomplete, since no principal rates has
been reported. While such incompleteness does not affect the
orientation-averaged rate �see Appendix�, it does affect the
understanding of dynamics of orientational dipole ensembles
�6,10,13�. Such a decay is a sum of single exponentials with
a rate distribution given by the emission rate surface. Any
observable derived from time-resolved decay beyond the
orientation-averaged rate �Tr�Im�G��� requires knowledge of
the principal rates, which is thus relevant to many physical
situations in nanophotonics.

In classical optics, the imaginary part of the Green dyadic
is not only relevant for radiating dipoles. Indeed, the imagi-
nary part of the Green dyadic has also been connected to the
so-called coherency matrix �or the electric cross-spectral
density tensor� �33� for black body radiation. In general, the
3�3 coherency matrix describes second-order spatial corre-
lations of the electric field and can be understood as a gen-
eralization of Stokes parameters to quantify the polarization
of near fields locally. Within this framework, a description of
local polarization by polarization ellipsoids directly points at
a quadratic form of the coherency matrix, since ellipsoids are
level sets �rather than polar plots� of an equation of the form
in Eq. �5�. It should be noted that the coherency matrix de-
pends on the incident source that generates the local electric
field. In the particular case that the field is due to black body
radiation the coherency matrix reduces to the imaginary part
of the Green dyadic Im�G�r ,r��, as derived by Setälä et al.
�34�. However, it is important to realize that for this identi-
fication of Im�G�r ,r�� with the coherency matrix to hold, the
source is required to be a statistically homogeneous and iso-
tropic distribution of radiating currents, and the medium is
supposed to be nondissipative �34�. This is diametrically op-
posite to the analysis of spontaneous emission sources pre-
sented here, which concerns localized and oriented sources
and is valid without limitation on material dissipation. It is
exciting that our method to find principal rates and orienta-
tions can be directly adapted to calculate the local polariza-
tion properties of black body radiation.

VI. SUMMARY

We have theoretically studied the spontaneous emission
rate of a two-level quantum emitter in any nanophotonic sys-
tem. We derive a general representation of the dependence of
emission rates on the orientation of the transition dipole by
only invoking symmetry of the Green function. The rate de-
pends quadratically on orientation and is determined by rates
along three principal axes. We show that these principal rates
and axes can be easily calculated without evaluation of the
full Green function. Furthermore we show that visualization
of emission rate surfaces as determined from principal rates
provides great insight on how preferred orientations for en-
hancement �or inhibition� depend on emission frequency and
location, and on strategies to actively switch emission rates
by the dipole orientation, as shown for a mirror, a plasmonic
sphere, or a photonic band-gap crystal.
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APPENDIX: DISCUSSION OF AVERAGE EMISSION RATE

A remarkable fact is that the orientation-average rate 	�

can always be calculated from the LDOS at just three per-
pendicular orientations, which need not coincide with the
principal axes �vmin,vmed,vmax�. First, we calculate the
orientation-averaged rate by integration over the full emis-
sion surface. Without loss of generality we align x , y , z
with the principal axes, so that the orientation-dependent rate
is:

���,�� = �min cos2 � sin2 � + �med sin2 � sin2 �

+ �max cos2 � . �A1�

By straightforward integration, the orientation-averaged rate
	�
 is

	�
 =
1

4�
�

0

2�

d��
0

�

���,��sin �d� =
1

3
��min + �med + �max� .

�A2�

Integration over the full emission surface clearly shows
that the orientation-averaged emission rate is equal to
the mean of the three principal rates, and hence 	�

= ��d2� /��0��2� /�c2�Tr�Im�G�r ,r ,�����. The invariance
of the trace of any matrix under arbitrary basis rotation im-
plies that the average rate in Eq. �A2� can be calculated from
the rates at any randomly chosen but mutually orthogonal
directions x , y , z as

	�
 =
1

3
��x + �y + �z� . �A3�
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