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1
Introduction

1.1 Background

Light interacts with matter through scattering, absorption and �uorescence. Without
matter there is nothing to look at, and without light the world around us can not be seen.
The appearance of an object is determined by how it interacts with light. For instance,
both white paper and mirrors re�ect all colors of the light, yet they appear very different.
When light impinges on a paper sheet, light penetrates many wavelengths experiencing
multiple re�ections from irregularities within the paper. A part of the multiply scattered
light will emerge again from the paper, but due to the multiple scattering almost all
information about how light impinged onto, and travelled through the medium is lost,
resulting in a diffuse, white appearance. In contrast, mirrors re�ect light specularly and
the re�ected light retains full information of the input beam, even allowing us to see an
image of the scene illuminating the mirror. The difference between white paper and a
specularly re�ecting interface shows that geometry matters for light-matter interaction.
In addition, also the electronic structure of the material matters. For instance, both
glass and mirrors display a specular re�ection, but mirrors much more strongly so
than glass. The distinction is through the dielectric constant, or polarizability, of the
matter [1]. Glass is an insulator, in which electrons are tightly bound to atomic nuclei,
leading to a small, and positive dielectric constant. In contrast, mirrors consist of
conductive metals and electromagnetic �elds that interact with the metal surface cause
conduction electrons to move in such a manner that light can not penetrate by more then
the skin depth. In terms of optical constants, conducting materials are characterized by
having a negative² r . When instead of a �at surface you would have a particle smaller
than the skin depth, which is typically 10 to 100 nm, the electromagnetic �elds can
signi�cantly penetrate. The electron density in the particle can undergo a collective
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1 Introduction

resonant oscillation that is driven by the impinging light �eld, creating a quasiparticle
called plasmon polariton [2, 3]. This thesis deals with a particular combination of
matter and geometry, namely particles of metal smaller than the skin depth.

Due to the involvement of all free electrons in the particle in this plasmon oscillation,
the interaction between light and the particle is much stronger than it would be when the
material is not conductive. This is especially true at resonance, when the driving light
�eld corresponds to the eigenfrequency of the electron density oscillation, which occurs
for frequencies in the visible spectral range. This increased light matter interaction
has three important consequences. First, plasmonic structures have a much stronger
polarizability per volume and therefore scatter light much more strongly than their
dielectric counterparts [4]. Second, the strong light matter coupling in plasmonics
makes possible subdiffraction con�nement of light. Third, in the near �eld of plasmonic
structures, a huge �eld enhancement can occur. These three properties have drawn
much attention among researchers, not only because of the many fundamental questions
these properties give rise to, but also from the perspective of practical applications
such as Surface Enhanced Raman Spectroscopy [5–7], sensing [8–12] and enhanced
light trapping in solar cells [13–16]. However, there is one major factor that limits
using plasmonics in functional systems: loss. Scattering of electrons by phonons
causes loss which is known as "Ohmic damping". This is accounted for within the
"Drude-Sommerfeld" model for the transport of electrons in solids [17] which starts
out from a classical equation of motion describing free electrons driven by light

me
@2~r

@t 2 Å me°
@~r

@t
Æ ¡e~E0e¡i ! t (1.1)

where ~r (t ) represents position,me is the (effective) electron mass,E0 is the incident
electric �eld that drives the system and° represents the rate of Ohmic loss, due to
scattering of electrons off phonons, impurities and soforth. In addition to the Ohmic
damping represented by° , depending on the metal electron density, oscillations are
dampened by interband and intraband transitions. Interband transitions occur when an
electron absorbs a photon and is excited from the valence band to the Fermi surface, or
from the Fermi surface to a conduction band. Intraband transitions occur by scattering
with other electrons and are dependent on the quality of the metal. In many optical
experiments, a large fraction of the incident light is therefore absorbed by the metal
and transformed into heat. Three solutions have been proposed. First, some authors
have suggested that very high positive index materials, such as silicon in the visible can
show strong optical resonances with much lower loss than metals [18]. Second, many
groups are exploring the possibility of new materials that have lower loss in addition
to having a negative, i.e. metal-like, dielectric constant [15, 19, 20]. Third, loss can
be compensated by including gain. Various demonstrations of loss compensation in
plasmonic systems exist [21–26] in which a plasmonic particle or surface is embedded
in or is adjacent to a gain material, which is typically a semiconductor material or an
organic dye. The gain medium is excited by an external source and emission by the
gain medium feeds the plasmonic mode.

Going beyond mere compensation of losses, i.e., exactly negating absorption by
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1.2 Building blocks of plasmon lattice lasers

gain, one can also wonder if it is possible to realize lasing based on plasmons. This
was �rst envisioned in the plasmonic context by Stockman and Bergmann in 2003
[27], who proposed that a deep subwavelength plasmonic particle in a gain medium
could lase. This idea is related to the "scattering laser" [28] in which the feedback
required for lasing is generated by scatterers, instead of by a cavity with �nely tuned
mirrors. Recently several plasmonic lasers were reported, notably using nanoparticle,
nanowires, metal �lms, and diffractive plasmonic systems. In this thesis we study lasers
created by 2D lattices of plasmonic particles in a slab of gain medium. In section 1.2,
we discuss the con�guration of the laser that we study in this thesis, examining all the
ingredients that make up the plasmonic mode structure on which the laser is built. In
section 1.4 we discuss the concept of a gain medium and how some elementary laser
characteristics derive from rate equations. Subsequently, a summary is given on what
has been done so far regarding plasmonic lasers, and what type of questions de�ne
debates in the plasmonics community on lasing. Finally we preview the content of the
subsequent thesis chapters.

1.2 Building blocks of plasmon lattice lasers

The system we study throughout this thesis consists of the following basic geometry.
First, we have a planar glass substrate which can be considered in�nitely thick. Next,
on top of this, a periodic lattice of isolated silver particles is made that are strong
plasmonic scatterers, which provide feedback. Finally, the particles are embedded in a
thin polymer layer that has two functions. On one hand it acts as gain medium, as we
dope the polymer with �uorophores. On the other hand, as the polymer has a higher
index than the glass and air surrounding it, it supports waveguide modes. In this section
we discuss textbook physics that is generally used to describe waveguides, scatterers,
and periodic systems.

1.2.1 Waveguide modes of slabs

To describe the optical response of a particle array embedded in a photoresist, it is
easiest to start with the simple case of a bare waveguide. Waveguides exist in many
forms and shapes, the most frequently applied ones being 1D waveguides such as optical
�bers, as well as 2D waveguides in form of dielectric slabs. Waveguiding in dielectric
layers can occur when there is an index contrast, i.e. the waveguide has a higher index
then the two adjacent media. In addition, the layer can only support waveguide modes
if it is suf�ciently thick. The waveguide dispersion as well as the mode pro�le in the
waveguide can be calculated using the method described by Urbach and Rikken [29].
In the method by Urbach, one �rst writes down an Ansatz for the �eld in each medium.
In this Ansatz, one incorporates two steps that are common for any problem involving
strati�ed media. The �rst is that in each layer one writes down the �eld as a sum of
plane waves, where the parallel momentum is the same in all layers as required by
translational invariance. The second is that polarization can be separated in "s" and "p",
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1 Introduction

or equivalently TE and TM illustrated in �gure 1.1. With these assumptions, the �eld in
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Figure 1.1: In (a) a TM mode of a slab waveguide is sketched, where the magnetic
�eld, represented by the green arrow, points in a direction transverse to the waveguide,
and the electric �eld represented by the blue arrow has a component directed out of
the waveguide plane. The red arrow indicates the wavevector. In (b) a TE mode is
sketched, where the electric �eld is transverse to the plane of the waveguide, whereas
the magnetic �eld has a component pointing out of the waveguide.

each medium is simply the sum of forward and backward propagating waves, of which
one needs to �nd relative amplitudes. The relative amplitudes follow from boundary
condition matching, using continuity conditions on the �elds. For a dispersion relation,
one solves the Maxwell equationsin absenceof any external driving �eld, meaning that
a non-zero solution can only be found for select combinations of parallel momentum
and frequency. This set de�nes the dispersion relation.

By way of example, in �gure 1.2 we plot the dispersion relation and typical mode
pro�les for the dielectric waveguide chosen throughout this work. The systems consists
of a glass substrate, (index 1.515) covered by a polymer (index 1.6), adjacent to air. We
assume the high index layer is dispersionless with a �xed refractive index ofnSU8 Æ1.6,
a substrate with index 1.515 and top medium with index 1. Rather than plotting the
dispersion itself, i.e.,! versusk , we calculate mode indices, de�ned as the ratio of
k to !/c . Figure 1.2 shows mode indices as a function of layer thickness, at a �xed
wavelength of 590 nm, which is the operation wavelength of our laser in Chapter 2.
The general trend is that for very small thickness, no mode is supported. At cut off
(about 250 nm in this case), the waveguide modes have index only just above that of
the substrate. For larger thickness the index increases towards that of the polymer, and
the mode energy density is more strongly localized in the high index layer. Above 750
nm a next waveguide mode appears. For a thickness of 450 nm, which is the thickness
we use throughout the thesis, we can see from the graph that two solutions exist: one
solution for TE polarized light and one for TM polarization. TE polarized light has
a transverse electric �eld (�gure 1.1a) and therefore experiences different boundary
conditions as compared to transverse magnetic (TM) polarized light (�gure 1.1). The
TE and TM modes have a very similar mode index, and also a very similar distribution
of energy density in the waveguide. However, the TE mode has entirely in-plane
polarization while the TM mode only has a small in-plane polarized component. While
the energy density of the modes is a measure for the overlap with the gain medium,
the polarization is important to understand coupling to the particle arrays in our work,
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1.2 Building blocks of plasmon lattice lasers
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Figure 1.2: In (a) the effective refractive index of a waveguide mode for a slab with
no particles is plotted, as a function of layer thickness. We assume ng lass=1.515,
nSU8=1.6 and nai r =1. The blue and green horizontal lines indicate the refractive index
of the SU8 and the glass, respectively. From the graph we can see that no modes exist
for a thickness below 114 nm below which cut off occurs. Above 114 nm one TE and
one TM mode occurs and from a thickness of 770 nm onwards two TE modes exist. In
�gure (b) and (c) �eld plots of a TE and a TM mode are given for the in plane and the
out of plane electric �eld component. The x, y and z directions are de�ned as shown in
the inset of �gure 1.1b.

owing to the fact that we deal with anisotropic particles. In the work described in this
thesis, we deal with TE polarization. For TE polarization, the in plane electric �eld
component is large and has a maximum near the glass/SU8 interface.

1.2.2 Periodic systems

In this section we discuss qualitatively the effects of introducing periodicity in a
2D waveguiding system. A periodic perturbation, such as a particle array, or a
perforation of a dielectric layer by holes, will in�uence the system depending on
e.g. the optical properties of the scatterers. First, we discuss the simpli�ed case where
a very weak periodic refractive index modulation scatters the waveguide mode but does
not signi�cantly change the waveguide mode itself [30]. If the periodic refractive index
modulation does not scatter very strongly then the forward and backward propagating
modes interact very little with each other, and we can approximate the dispersion of
our combined system with a free folded dispersion mode similar to the notion of a
free electron dispersion in solid state physics [31]. In this model the particle array
creates copies of the dispersion curve atk Å G, whereG is the reciprocal lattice vector
G Æn2¼/d , with n an integer andd the pitch of the periodicity. Taking into account
only the �rst Brillouin zone, a dispersion diagram results as shown in Figure 1.3(a)
for a one-dimensionally periodic system. This type of diagram shows the following
essential physics. First, within the 1st Brillouin zone, the dispersion organizes in
discrete bands. Second, at special points in the Brillouin zone, notably the Brillouin
zone edge and origin, intersections of bands occur. These intersections correspond to
Bragg conditions.

The dispersion of a real periodic system will deviate from the presented case of
in�nitely weak perturbation, for which modes simply fold back and intersect without
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Figure 1.3: Dispersion of a 1D photonic crystal consisting of just 2 slabs with
frequency independent refractive indices. In �gure (a) both slabs are chosen to have
a refractive index equal to 1. In this situation, no re�ection can occur and there are
no back- and forward traveling waves that can interact with each other. In �gure (b)
we have chosenn1 Æ1 andn2 Æ1.2. In this case, back- and forward traveling waves
interact with each other, giving rise to stop gaps indicated by the arrows. In �gure c)
we setn1 Æ1 andn2 Æ3, where the deviation from the ideal folded dispersion of (a) is
even more clear as not only stop gaps open, but the entire dispersion changes.

altering the shape of the dispersion. The deviation occurs most notably at the crossing
points of the waveguide modes, which in real systems will be avoided crossings. At
these avoided crossings a stop gap is created. The occurrence of a stop gap can be
understood by analyzing a 1D periodic system, such as a dielectric mirror under normal
incidence shown in �gure 1.4b. A dielectric miror, also known as 1D photonic crystal,
consists of an in�nite stack of lossless dielectric slabs with a thickness comparable to
the wavelength of light, which alternate in refractive index. The dispersion of waves
in a dielectric mirror can be calculated using the transfer matrix method [32]. Results
from this calculation are shown in �gure 1.3b and c, and show most of the important
features that occur for a real photonic crystal. For a small refractive index contrast of
10%, a small gap opens at the previous intersection points. Both on the upper band
edge (colored green) as well as the lower band edge (colored pink in �gure 1.3b) a
standing wave is created in the crystal. In the �rst case, the electric �eld has its peaks in
the slabs with the lowest refractive index, as is sketched in �gure 1.4b, case (1). For the
lower band edge, the opposite is true and the electric �eld has its peaks at the highest
refractive index (case 2).

When the index contrast increases, the stop gap becomes larger and for very large
index contrast (�gure 1.3c, wheren1 Æ1 andn2 Æ3) the entire shape of the dispersion
has changed in the sense that bands are no longer linear over most of the Brillouin zone.
When the index contrast is not too large, perturbation theory can be applied to obtain
the following expression for the relative size of the lowest stopgap [33]:

±!

!
¼

¢²

²̄
¢
sin(¼d/ a)

¼
(1.2)
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1.2 Building blocks of plasmon lattice lasers
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Figure 1.4: In (a) a schematic of a 1D scattering array in a waveguide is shown.
Qualitative understanding can be obtained using the 1D photonic crystal (b) as a
model for (a). In (a) scattering off a corrugation on the surface occurs, which creates
backward and forward propagating modes, whereas in the photonic crystal re�ection
and transmission occurs at each interface, creating backward and forward propagating
modes. In (b) we also show the electric �eld for light at the upper (case 1) or lower
(case 2) band edge. In both cases the mode in the crystal is a standing wave but the
maxima of the electric �elds are shifted with respect to each other, where the upper
band edge has its electric �eld peaks at the lowest refractive index (n2).

where¢² is the difference in permittivities, whilē² is the mean anda is the spatial
period. In other words, the relative stop gap size scales directly with the contrast in
dielectric constant, while the second term represents the geometry of the layer. As
we will see in chapter 3, even though this equation is not derived for scattering in
plasmonic systems, the dispersion of a plasmonic system can be qualitatively explained
using notions akin to Eq. (1.2).

As outlined above, the systems we study are not one dimensional. Instead we
study 2D periodic lattices of scatterers embedded in a waveguide with gain. Dielectric
1D and 2D gratings with gain (see sketch in Fig. 1.4) have already been studied in
the limit of very small index contrast well before the �eld of photonic crystals was
born. Indeed, when combined with gain to make a laser, this type of structure is
known as distributed feedback (DFB) laser [34–36]. To some degree, the analysis
for the 1D system carries over. The �rst approximation one makes in this case, is
that the unperturbed dispersion relation that is folded into the Brillouin zone by the
periodicity is no longer the dispersion of free space, but rather the dispersion relation
of the waveguide mode. The second complication to deal with, is that for a 2D lattice,
the band folding results in a richer band structure. Figure 1.5a shows a repeated zone-
scheme view for a square two-dimensionally periodic system. For a 2D square system,
we have waveguide mode cones instead of! ¡ k dispersion lines intersecting (�gure
1.5). In this plot the axeskx andk y represent the in plane wavevector components,
meaning parallel to the waveguide plane. A horizontal crosscut through the repeated
zone scheme dispersion results in isofrequency contours (�gure 1.5(b)). Taking a
vertical crosscut gives a dispersion band diagram of the 2D system in a speci�c wave
vector slice. Note that in the plotted band diagram (�gure 1.5(c), which takes a slice
alongkx while keepingk y Æ0, parabolas appear that are due to cones centered on
reciprocal lattice points in the perpendicular direction (i.e. on thek y-axis).

In the �eld of DFB lasers, a powerful analytical tool to describe waves in periodic
media was developed by Kogelnik and Shank [37] and is known as "coupled mode

15



1 Introduction

Figure 1.5: (a) Repeated zone scheme representation of the dispersion of a two-
dimensionally periodic system. We assume the dispersion of the system without
periodic modulation to be a simple cone (orange cone centered on origin). Panel b
shows a constant frequency cut taken at!d /2¼c Æ1.5 (d the lattice pitch). Panel (c)
shows a band diagram, i.e., a slice alongkx while keepingky Æ0.

theory". In this model, one essentially describes the physics near a stop gap by taking
just a few modes, i. e., one for each band that meets in the band crossing, that in the
transverse direction all follow the mode pro�le of the waveguide, and in the in-plane
direction are a simple plane wave. These plane waves are then coupled according to
the strength of the periodic dielectric structure, giving rise to stop gaps, exactly as in
our sketch of the nearly free photon model. However, beyond the nearly free photon
analysis of photonic crystals, in coupled mode theory one can also include temporal
and spatial modulations of, for instance, the gain medium.

1.2.3 Interaction of light with plasmon particles

While the previous section dealt essentially with the physics of weakly modulated
periodic systems, in this thesis in fact we work with nanoparticles with a plasmonic
resonance. The motivation for using metallic nanoparticles is that metallic nanoparticles
exhibit resonance behaviour, in contrast to dielectric particles which have a spectrally
�at response. The difference originates from how electrons behave in the material.
In a dielectric system, electrons can not move freely through the material as they are
bound to an atom. For a plasmonic particle, electrons can move freely within the
metal, and the effect of an electric �eld is to slightly displace the free electron cloud
relative to the ionic lattice of the particle (�gure 1.6b). This creates an effective dipole
moment (Fig. 1.6c)¡! p Æq ¢

¡!
d and at the same time a linear restoring force, as the

electron cloud is pulled back to the positively charged ionic backbone [38]. The motion
of electrons therefore behaves like a harmonic oscillator where the light �eld is the
external force. When the incident light is equal to the characteristic frequency of the
harmonic oscillator, a resonance occurs for which the created net dipole moment is
maximal. Light scattering occurs due to reradiation of incident light due to the collective
oscillatory motion of electrons. Thus, at resonance light scattering is maximal.

To illustrate this, we show in �gure 1.6 scattering ef�ciencies calculated using
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1.2 Building blocks of plasmon lattice lasers

Figure 1.6: A schematic of how dielectric versus plasmonic particles respond to an
incoming light �eld. In dielectric particles electrons can not move freely as opposed to
plasmonic particles, where the light �eld causes changes in the electron density such
that an effective dipole moment is generated. The resulting scattering ef�ciency plotted
in (d) shows what effect this has on the scattering strength. The plots are obtained from
Mie theory where spheres embedded in glass (ng lass Æ1.52 ) are used. The dielectric
sphere has a refractive index of 2.4.

Mie theory [4] for silver, gold and a dielectric particle, where all three spheres have a
diameter of 100 nm and are embedded in glass (ng lass Æ1.52). The graph exempli�es
three facts. First, silver and gold particles exhibit a strong dipolar resonance whereas
the dielectric sphere does not. Second, the scattering ef�ciency is much smaller for
the dielectric particle (even though we assigned it a high refractive index of 2.4),
especially compared to silver and gold when they are at resonance. Indeed, for the
metal particles the scattering ef�ciency, which is de�ned as the ratio of scattering cross
section to geometrical cross section exceeds unity. Third, whereas both gold and silver
are plasmonic, their scattering ef�ciencies show different behaviour, as the resonance
of gold is more red-shifted, and the scattering of silver shows an extra peak around
418 nm. The red-shift originates from the different material response function of gold
and silver that originates from their different electron density. The extra peak at short
wavelengths generally occurs for larger particles, when there is not just a dipolar but
also a quadrupolar resonance.

A commonly used approximation to describe scattering by objects much smaller
than the wavelength is Rayleigh scattering [4]. If we deal with a nanoparticle that
is very small compared to the wavelength, the so-called dipole approximation holds,
which states that a scatterer can be viewed as an object that radiates as a dipole, with
an induced dipole moment set according to a polarizability~p Æ®~E0. An approximate
expression for the polarizability can be found in the so-called quasistatic limit for
spheres, meaning that one takes the well known electrostatic (i.e., zero-frequency)
polarizability of sphere, but substitutes the frequency dependent permittivities of the
metal and its surrounding [1]:

®(!) Æ4¼²m ² 0r 3 ² r ¡ ² m

² r (!) Å 2²m
(1.3)

where² m is the permittivity of the surrounding medium, and² r is the permittivity of
the metal. A resonance occurs when the real part of² r , which is negative for metals,
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1 Introduction

equals¡2² m . From this expression, observables such as the scattering and extinction
cross section can be estimated. For instance, the power radiated by a dipole with dipole
moment~p is given by [39]

P Æ
jpj2

12¼²0² m
!k 3 (1.4)

with k Æ !n
c , with c the speed of light in vacuum andn Æ

p
² m the refractive index

of the medium surrounding the dipole. The ratio of radiated power divided by the
incoming energy density gives the scattering cross section (units of area),

¾scat t Æ
k4

6¼²20
j®(!) j2 . (1.5)

Likewise, the excintion cross section, which quanti�es the sum of scattering and
absorption is given by

¾ext Æ
k

² 0
Im [®(!)]. (1.6)

From these equations we can observe that the scattered power scales with the size of
the scatterer asr 6 whereas the absorbed power scales asr 3. Thus, bigger particles tend
to be more ef�cient scatterers, whereas the interaction of very small particles with light
is dominated by absorption. For particles that are between 20 nm and 100 nm in size,
scattering is so strong that the quasistatic approximation fails. However, the dipole
approximation, and Eqs. (1.5,1.6) for scattering and extinction still hold, provided one
adapts the polarizability to contain radiative loss.

While single plasmonic particles interact very strongly with visible light in the
sense that their scattering cross section exceeds their geometrical size, the interaction
can be enhanced even more when using oligomers [40], or arrays [41–46] of plasmonic
scatterers. Plasmonic particles couple to each other through a) far �eld and b) near
�eld interactions. Near �eld interactions occur when the particle pitch is smaller than
the wavelength of light and occurs because charges of the plasmon particles interact
with each other through their quasistatic electric �eld. This is a phenomenon known in
plasmonics as "plasmon hybridization", in analogy to the theory of hybridization of
molecular orbitals [47]. Far �eld interactions are important for the scattering response
of plasmon particles when particle array pitches are comparable to the wavelength of
light. At these condition grating diffraction can occur, which typically creates strong
(Fano) resonances in the far �eld [48]. Both near- and far �eld coupling effects in
plasmon particle arrays can be qualitatively accounted for in a socalled coupled dipole
model [48]. A coupled dipole model assumes that 1) all scatterers are dipole scatterers
and 2) the electric �eld at each dipole is equal to the incident electric �eld plus the sum
of the electric �elds generated by all other dipoles in the array. In lattices of identical
particles this leads to a renormalization of the polarizability such that when the lattice
is irradiated with a parallel wave vector~k jj , the induced dipole at site~Rn of the lattice
reads~pn Æ~pei ~k jj ¢~Rn , with

~p Æ
1

1/® ¡ S(~k jj )
~Ei nc (1.7)
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1.3 What is a laser?

Figure 1.7: In a lattice, the polarizability of each particle is renormalized by a frequency
and parallel wave vector dependent termS that is known as lattice sum, which quanti�es
all dipole-dipole interactions between particles. Shown here is the real and imaginary
part of the lattice sum for a square lattice of pitch a, as calculated according to the
receipe of de Abajo [48]. Strictly the lattice sum is a tensorial quantity - shown here
is the xx-component, withk jj taken as thekx -axis. Note that the lattice sum has very
sharp features exactly when frequency and wave vector match the folded dispersion
relation of vacuum, or in other words, whenever a grating diffraction condition is
matched.

Here the quantityS(~k jj ) accounts for all the dipole-dipole interactions in the lattice.
Generally, this "lattice sum" contains very strong features at diffraction conditions.
Figure 1.7 shows such a lattice sum for a square lattice, calculated according to the
method of de Abajo [48]. Interestingly, the lattice sum shows very strong, dispersive,
features that exactly trace out the repeated zone scheme dispersion of a 2D system
in the nearly-free photon approximation. From equation 1.7, we see that the largest
response of the particle lattice is achieved when the denominator approaches zero. Thus,
the combined effect of the single particle resonance, given by®, and the lattice sum
can result in a very large lattice polarization. The combination of strongly plasmonic
particles and diffraction resonances has been used in pursuits of high local �elds for
sensing [44], for outcoupling of light in solid-state lighting [49–51], and in `quantum
plasmonics' pursuits of strong coupling between plasmon modes and emitters [52].

1.3 What is a laser?

LASER is an acronym for Light Ampli�cation by Stimulated Emission of Radiation.
To obtain lasing three elements need to be present; 1) a gain medium, 2) an excitation
source to excite the gain medium and 3) a cavity for feedback. When this requirement
is met, stimulated emission gives rise to lasing. Lasers emit light that can reach
very high powers and often exhibit a high degree of spatial and temporal coherence,
therefore being monochromatic and very directional. These properties resulted in
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lasers becoming one of the most successful inventions of the twentieth century, with
applications varying from barcode readers to holography.

Laser research started with the MASER, which is an ampli�er for microwave
radiation, which Townes and his colleagues demonstrated experimentally in 1954 [53].
In the �rst MASER, ammonia was used as a gain medium and the resonator supported
one resonant mode [54]. These MASERS were very limited in output power and
practical applications where limited. Therefore, interest in ampli�cation of radiation
was declining. This changed as soon as the concept of ampli�cation of radiation was
applied to light, that is, the visible frequency range with wavelengths within the range
of 400 nm-700 nm [54–57]. For this, Schawlow and Townes used the concept of the
Fabry-Pérot cavity, i.e., a resonator composed of two parallel planar re�ective surfaces
with a separation of an integer number of wavelengths. Fabry-Pérot lasers are most
familiar to everyone, not only because they where the �rst type of laser introduced
in the sixties, but also because they are in general used for explaining basic laser
physics concepts. In a Fabry-Pérot laser the cavity consists of two parallel mirrors,
where the gain medium is located in between the mirrors. At least one of the mirrors
has to be partially transmitting to couple out the laser light. Excitation can be done
in various ways but in this thesis we only discuss optical excitation [58]. Excitation
creates population inversion of the gain medium.

1.3.1 Spontaneous and stimulated emission

The gain medium of a laser generally consist of a dense ensemble of molecules, atoms,
ions, quantum dots, or in case of semiconductor, quantum wells. We consider the gain
medium as an ensemble of emitters that are henceforth called "(quantum)emitters".
The radiative decay of a quantum emitter from an excited to a ground state can occur
through two pathways. First, emitters can spontaneously decay from the excited state
to the ground state, randomly emitting a photon in any of the available modes. Second,

Figure 1.8: In (a) a schematic of a typical Jablonski diagram is shown, depicting
optical transitions in a simple three level system. Absorption can cause a transition
from S0 to S1 or S2, whereas spontaneous or stimulated emission is generated when the
emitter undergoes a transition fromS1 to S0. Transitions from the triplet stateT1 to S0
are spin forbidden and are irrelevant in lasing. Figure (b) shows a typical normalized
absorption and emission spectrum for rhodamine 6G in methanol [59].
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1.3 What is a laser?

atoms can undergo a stimulated transition, in which the atom is driven by an external
wave. The emitted photon will be in the same spatial and temporal mode as the incident
photon. Finally, absorption may create a repopulation of the upper state again. These
processes are illustrated in the Jablonski diagram for a three level system in �gure
1.8 which we obtain from molecular physics. Stimulated emission and spontaneous
emission are depicted by the pink and purple arrows, which are transition from levelS1

to S0. Absorption excites the atom from the ground stateS0 to an excited stateS2, that
is for instance a vibrationally excited sublevel ofS1, or even a higher lying electronic
state [60]. Note that in molecules all levels have many vibrational/rotational sublevels
indicated by the gray lines. Due to these rotational and vibrational sublevels, both the
absorption spectrum as well as the spontaneous emission spectrum is broad. This can
be seen in the emission/absorption spectrum of Rh6G in �gure 1.8. Nonradiative decay
is often also present and takes place either through vibrations (heat) or spin conversion.
Spin conversion is the proces of �ipping a spin, transforming the singlet spin state of
the atom to a triplet state which is called intersystem crossing. The transition fromT1

to S1 is spin forbidden and therefore occurs on a much longer time scale. The emission
originating from this transition is called phosphorence instead of �uorescence.

The rates of spontaneous emission, stimulated emission and stimulated absorbtion
can be calculated using quantum mechanics, by solving for the coupling between the
electronic levels of a quantum emitter, and the quantized electromagnetic �eld [61, 62].
However, the ratio between spontaneous and stimulated emission and absorption was
derived by Einstein before the formulation of quantum mechanics was developed.
Einstein considered a so-called "rate-equation" [62]. Suppose that we deal with an
ensemble of effective two level systems (levelsS0 andS1), labelling the populations
of the ground and excited state asN0 andN1, respectively. According to Einsteins
argument, the rate equation must have the following form:

dN1

dt
Æ ¡N1A¡ N1B10½(! 0) Å N0B01½(! 0) (1.8)

where½(! 0) is the energy density of the electromagnetic �eld at the emiter, as one
would supply, for instance, by external illumination.A, B10 andB01 are constants
known as the Einstein coef�cients. The �rst term on the right hand side represents
decay without any external �eld, while the other two terms represent population
decay, respectively population growth in proportion to the surrounding energy density.
To be able to relate theA andB coef�cients, Einstein considered the ensemble of
emitters in thermal equilibrium with its environment. The energy density (density of
electromagnetic energy per unit volume, and per unit of angular frequency) is given by
the well known expression proposed by Planck in 1900

½(!) Æ
ß

¼2c3

! 3

eß!/k BT ¡ 1
. (1.9)

where T is the temperature. At thermal equilibrium equilibrum, we can state the
following
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1. The population of each level is time-independent,dN1
dt Æ0. Rewriting equa-

tion (1.8) gives an expression for the energy density in terms of the Einstein
coef�cients,

½(! 0) Æ
A

(N0/ N1)B01 ¡ B10
(1.10)

2. The ratio of populations in the excited state and the ground state satisfy the
Boltzmann distribution

N0

N1
Æ

e¡E 0/k BT

e¡E 1/k BT
Æeß! 0/k BT (1.11)

Combining these two results with Plancks law (Eq. 1.9) results in the following
relations

B10 Æ
¼2c3

ß! 3 A (1.12)

and
B01 ÆB10. (1.13)

Note how by using thermal equilibrium arguments, Einstein obtained a temperature-
independent relation between coef�cients. The conclusions are two-fold. First, since
B01 andB10 are identical, the rates for absorption and stimulated emission are identical
for a two-level system. Indeed, these coef�cients can be calculated by quantum-
mechanical perturbation theory where the optical �eld is treated entirely classically.
This perturbation theory analysis results in a product of the intensity of the applied
�eld, and a wavefunction dependent prefactor that quanti�es the oscillator strength
of the transition. The EinsteinB coef�cient can therefore also be cast in the form of
an oscillator strength or an absorption/stimulated emission cross section. The second
important conclusion that Einstein derived is that thermal equilibrium demands non-
zeroA, meaning that it demands population decay even in absence of any �eld. This is
known as spontaneous emission.

1.3.2 Rate equations and gain

Lasing can occur if an ensemble of emitters is pumped to the excited state, and is
coupled to an optical mode that provides feedback. In the simplest implementation
this would be the "cavity" mode of a Fabry-Pérot laser cavity. Using the concepts of
spontaneous and stimulated emission, we can derive a simple rate equation model that
demonstrates important characteristics of lasing that are used in experiments to prove
lasing [63]. To do this, �rst we rewrite equation (1.8) to a simpli�ed rate equation for
the excited state populationN1 of a gain medium in a laser. Generally, to obtain lasing
one has to decouple the levels used for pumping, from the levels on which the system
lases. Hence, one commonly derives lasing assuming an ensemble of N molecules
that each are a four-level system, not a two-level system. In practice, one typically
pumps from the vibrational ground state of the electronic ground state manifoldS0,
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1.3 What is a laser?

to some higher vibrationally excited state in theS1 manifold. Lasing typically occurs
from the vibrational ground state ofS1 to some vibrational level in theS0 manifold,
i.e., at some wavelength redshifted from the pump transition. For typical gain media
one can use a separation of time scales, as vibrational relaxation is fast (picosecond
time scales), while emission is slow (nanoseconds). Under these conditions, only the
populationN0 of the lower level of the pump transition, and the populationN1 of the
upper level of the lasing transition are relevant. Note thatN0 Å N1 ÆN . One can derive
a rate equation forN1:

dN1

dt
Ær ¡ ÁCN1 ¡ ¡ N1. (1.14)

The absorption term has been replaced by a constant rater , representing a constant
pump rate of the gain medium to the excited state. Note that here we do not ask how this
constant rater is achieved. In our own experiments, as in many dye lasers, this is done
by optically pumping molecules in the gain medium to higher vibrationally excited
state (labelledS2) in theS1 band of Figure 1.8 using a pump laser that is signi�cantly
blue shifted from the lasing wavelength. The state that is meant with `excited state
population' is the vibrational ground stateS1 of the electronically �rst excited state, to
which excited emitters quickly relax. The second term represents stimulated emission
in proportion to the number of photonsÁ in the cavity mode, thereby being equivalent
to N1B01½(! 0) in Eq. (1.8). The third term represents spontaneous emission, where¡ is
the spontaneous decay rate. For the number of photonsÁ in the cavity, a complementary
equation can be written

dÁ

dt
Æ ¡° cÁ Å ÁCN1 Å ¯ ¡ N1 (1.15)

where we include radiation loss from the cavity by including the term° c which
represents the cavity decay rate. The constant¯ is included to represent the probability
that spontaneous emission actually contributes to the cavity mode. Generally, this
parameter that is famously known as "spontaneous emission beta-factor" is small. For
instance if one considers a typical macroscopic laser resonator, the cavity mode is
de�ned by mirrors at spacings of (tens of) centimeters, yet with a mode diameter
of at best millimeters. Hence a solid-angle estimate immediately shows that an
overwhelming fraction (1-¯ ) of the isotropically radiated spontaneous emission will
not contribute to the cavity [63].

These two rate equations are the starting point of any treatise on lasers, as they
incorporate the basic feature of a lasing threshold, where below threshold emission
is dominated by spontaneous emission into all directions, while above threshold
stimulated emission ensures strong emission into the cavity mode. We can see how
threshold behaviour arises from these equations by looking at steady state solutions. In
steady state, we haver ÆÁCN1 Å ¡ N1 and° cÁ ÆÁCN1 Å ¯¡ N1 which we can rewrite
to

N1 Æ
r

ÁC Å ¡
(1.16)
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and

Á Æ
N1¯¡

° c ¡ N1C
. (1.17)

First, below threshold, i.e., when the pump rate is small, we haveÁC ¿ ¡ andN1 Ær
¡ .

Thus, for low pump powers the number of emitters in the excited state increases linearly
with pump power and is limited by spontaneous emission. Very different behavior
is obtained for pump rates when a threshold is reached that is evident in Eq. (1.17),
whenN1 approaches° c

C ÆN th , at which point the number of photons in the cavity
rapidly increases. When this threshold is reached, requiring a a pump rate exceeding
a threshold value ofr th , population decays predominantly by stimulated emission in
the cavity mode. These simpli�ed rate equations for a gain medium in a resonator thus
predict one canonical behavior of a laser, namely a laser threshold, below which the
emission of the system is simply spontaneous emission (as if the resonator were not
there), and above which emission is dominated by stimulated emission into the cavity
mode. The threshold is reached when the round trip gain due to stimulated emission
exceeds the round trip loss of the cavity. Both above and below threshold the output
power is linear in pump rate, however with very different slopes. The sharpness of the
transition between the two regimes is strongly dependent on the value of¯ . Since most
lasers have very small¯ -factors, the threshold is generally easily observable as a kink
in the output intensity versus input pump power [63]. Moreover, the fact that above
threshold almost all emission is stimulated emission into the cavity mode is generally
observable as a spectral narrowing and emergence of spatial coherence. This type of
rate equation analysis is naturally just the starting point for understanding lasers, a
full understanding of which requires further theory for, e.g., the commonly observed
spectral narrowing, emergence of spatial coherence, photon statistics, and the spatial
and temporal behavior in presence of multiple cavity modes that compete for gain.

1.4 Plasmonic lasers

1.4.1 Proposed and reported plasmon lasers

Plasmon lasers have been a topic of interest ever since the prediction by Bergman
and Stockmann in 2003 [27] that plasmons can operate in the same way as photons
regarding the lasing process. They posed the concept of Surface Plasmon Ampli�cation
by Stimulated Emission of Radiation, or spaser. Spasers are the plasmonic counterpart
of lasers. Just as is the case for a laser, a spaser consists of three essential components;
a gain medium, a resonator and an external excitation source. The difference with a
laser is that the resonator is a cavity for Surface Plasmon Polaritons (SPP's) instead
of photons. Because plasmons are bosons, they can accumulate in one mode just as
photons, as is required to get stimulated emission. According to Stockman [27, 64], the
spaser operates as a quantum ampli�er of the deeply subdiffractive con�ned plasmon
resonances that he envisions exist for metal particles in the "quasi-static" limit (c Æ 1
or size¿ ¸ limit). In this paradigm, a spaser would not create any radiative output, since
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radiation loss is assumed negligible. This should be contrasted to the fact that actual
plasmon particles usually have sizes exceeding¸/2¼ , meaning that they do show strong
radiative loss. If lasing would occur with such plasmon particles, the resulting laser
could also be viewed as a "scattering laser" as proposed by Savels and Lagendijk [28].
In their paradigm, the smallest possible laser would consist of three strong scatterers
(resonant scattering cross section is3¸ 2/2¼, and a gain medium consisting of just one
or a few atoms).

There are many approaches to using plasmonics in lasers [65]. A general problem
in such lasers is that because plasmonic systems are so lossy, spasers need a substantial
amount of gain. To obtain more gain, the round-trip gain can be increased either by
using an emitter with a large gain coef�cient, or by increasing the cavity length while
reducing the con�nement in the metal. In the �rst claimed demonstration of a spaser by
Noginov et al [66] the SPP resonator consisted of a gold nanosphere with a diameter of
only 14 nm for which the quality factor of the SPP is only 14.8. Noginov et al. claimed
spectral narrowing and threshold behavior for such spheres, surrounded by a very
dense shell of organic dye. It should be noted that to date the observation by Noginov
has not been reproduced by any group, and is disputed on basis of theoretical and
experimental considerations. Demands on gain are eleviated for the so-called hybrid
photonic-plasmonic mode spasers with slightly weaker con�nement and higher Q that
were pioneered at Berkeley [67, 68]. In this type of laser one has typically used a mode
that is tightly con�ned between a thin, �at, metal �lm, and a nanowire or nanoplatelet
that provides both gain and a high refractive index. Between the high index gain
medium and the plasmonic metal there is a spacer layer. In this type of con�guration
a hybrid mode between the plasmonic waveguide mode and the photonic nanowire
mode is formed [67, 69, 70]. The EM �elds of this hybrid plasmon mode concentrate
in the spacer layer, instead of in the lossy metal, making even room temperature lasing
operation possible [68]. Many demonstrations of spasers have utilized the hybrid
plasmon laser approach in which a semiconductor gain material, a spacer layer and
a waveguide are present [70–75]. More recently, non-hybrid subdiffractive plasmon
mode lasing has also been demonstrated [76]. Another approach in which lasing was
demonstrated used top-down fabrication of metal coated semiconductor lasers, where
the gain medium (typically a III-V semiconductor) is clad by a metal to con�ne the
laser mode volume [77–79]. Although for such systems lasing does not occur on a
pure plasmonic mode, plasmonic effects cause high Purcell enhancements that in turn
result in a very high̄ factor. In this context, an almost thresholdless laser has been
demonstrated [80]. In this thesis we study diffractive plasmon particle array lasers that
display distributed feedback lasing. The �rst diffractive metal particle array laser was
demonstrated by Stehr et al. in 2003 [81]. Since then it has been shown that bow ties
placed in a diffractive array embedded in a low index polymer with gain, show lasing,
supposedly due to spaser action of the individual bowties [82, 83]. Also the inverse
geometry, i.e., metal �lms with hole arrays that provide scattering has been shown to
lase [84, 85].
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1.4.2 How to recognize lasing in plasmonic systems

When claiming lasing emission in any type of photonic structure, two good questions
to ask are, �rst, how one recognizes lasing, and second, if any characteristic of the laser
is particular for the speci�c type of photonic structure. Applied to plasmonics one can
hence ask: how does one recognize a plasmonic laser, and how does the plasmonic
nature of the resonator enter the physics. Generally, when building a laser one �rst
attempts to con�rm threshold behavior in intensity. Next, laser emission is generally
characterized by a high degree of spatial and temporal coherence. Temporal coherence
is visible in the emission spectrum, as a distinct characteristic linewidth narrowing
occurs when passing the lasing threshold. Spatial coherence can be investigated by
observing interference effects of the direct laser emission, e.g. by performing a double
slit experiment [86] or looking at intensity correlations in real space images. Finally
it is also possible to investigate the photon statistics of the light output. For some
plasmonic lasers these criteria will be dif�cult to apply. For instance, since plasmon
resonators generally have quality factors between 5 and 50, the underlying mode need
not be narrow in frequency, which could limit the line narrowing. Also, the high Purcell
factors of plasmons can result in very high beta factors, meaning that one can obtain
lasing without a threshold [80]. If a resonator is deeply subwavelength, laser output
into the far �eld need not be directional. In this thesis we will study extended plasmon
particle systems, that clearly evidence lasing on the criteria of threshold, line narrowing
and spatial coherence, while photon statistics is not measurable for practical reasons.
The remaining major debate for any plasmon laser is in how far the mode that lases is
actually `plasmonics', and if this means that the physics of the laser is different from
that of a dielectric counterpart. This thesis will be devoted to unravelling if, and if so,
how, the particle plasmon resonance is relevant for the lasing characteristics of our
plasmonic counterpart of traditional dielectric distributed feedback lasers.

1.5 Outline of the thesis

In this thesis we study lasing in diffractive plasmon particle array systems. We
utilize plasmonic particles as strong point dipole scatterers in a distributed feedback
con�guration. Using basic �uorescence microscopy we are able to demonstrate lasing
and map dispersion diagrams. From the dispersion diagram we show how plasmonics
changes the waveguide mode as a result of the huge scattering strength as compared
to standard DFB lasers. In chapter 2, we prove lasing in simple square lattices of
gold and silver disks and show how the stop gap on which it operates correlates
with the pitch of the lattice. In addition, we perform a comparison between three
different materials (silver, gold and titanium dioxide) and show that due to its strong
scattering strength silver modi�es the band structure noticeably, yet due to its loss
simultaneously exhibits a much higher threshold with respect to the dielectric titanium
dioxide system. In chapter 3 we explore the effect of increasing scattering strenght in
much more depth. Whereas in chapter 2 the resonance frequency of the silver disk is
quite stongly red shifted compared to the emission bandwidth of our dye, in chapter
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3 we use a FRET-pair of dyes to obtain a gain window that lies exactly in the range
of the resonance frequency of 100 nm diameter silver disks. We unravel from the
dispersion diagram how the dispersion diagram changes as a function of detuning of
the plasmon resonance with respect to the emission frequency of the dye. In chapter 4
we study lasing in randomized lattices of silver particles. The main focus is to answer
the question: how much order do you need to obtain lasing? From the results we �nd
that lasing on the second order Bragg diffraction on which Chapters 2 and 3 rely is
very robust against introducing disorder. In addition, we use speckle intensity statistics
to real-space �uorescence images and with this introduce a method to distinguish
spontaneous emission from lasing. Finally, in chapter 5 we study an intermediate case
between periodic and random systems and study quasi- and aperiodic lasers. We use
deterministic generation sequences to generate lattices with a fourier spectrum that
varies from discrete to increasingly continuous. We show that when the underlying
particle pitch is the same as before, outcoupling of laser emission is determined by
the underlying lattice, whereas the lasing frequency remains �xed at the 2nd order
Bragg condition. Also new lasing conditions arise from diffractive resonances that are
peculiar to aperiodic systems.
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2
Lasing at the band edges of plasmonic lattices

We report room temperature lasing in two-dimensional diffractive lattices
of silver and gold plasmon particle arrays embedded in a dye-doped
polymer that acts both as waveguide and gain medium. As compared to
conventional dielectric distributed feedback lasers, a central question is
how the underlying band structure from which lasing emerges is modi�ed
by both the much stronger scattering and the disadvantageous loss of
metal. We use spectrally resolved back-focal plane imaging to measure
the wavelength- and angle dependence of emission below and above
threshold, thereby mapping the band structure. We �nd that for silver
particles, the band structure is strongly modi�ed compared to dielectric
reference DFB lasers, since the strong scattering gives large stop gaps.
In contrast, gold particles scatter weakly and absorb strongly, so that
thresholds are higher, but the band structure is not strongly modi�ed. The
experimental �ndings are supported by �nite element and fourier modal
method calculations of the single particle scattering strength and lattice
extinction.

2.1 Introduction

In the past decade, plasmonics has become a very active �eld of research within
optics owing to the unique opportunities for broadband strongly enhanced light matter
interaction in precisely fabricated metal nanostructures [1]. Enhanced light matter
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2 Lasing at the band edges of plasmonic lattices

interaction arises from the fact that plasmons, as hybrids of photons and charge density
oscillations, are not restricted to the conventional diffraction limit. In addition, it has
been shown that plasmon particles can enhance emission decay rates of �uorophores
due to high Purcell factors over large bandwidths [2–6]. In fact, for low quantum
ef�ciency �uorphores up to 1000-fold brightness enhancements per molecule have
been reported near bow tie antennas [3–8]. Huge �eld enhancements (of order 103

in electric �eld) have further been evidenced in surface enhanced Raman and surface
enhanced infrared spectroscopy [9, 10]. Interest in exploiting plasmonics for lasing
was sparked by the seminal paper by Bergman and Stockman in 2003 [11], where
plasmonics was proposed for reaching deeply sub-diffraction sized lasers, ultralow
thresholds, ultrafast laser dynamics, and unique properties due to the fact that only a
few gain molecules and intracavity photons participate [12]. This vision of a `spaser'
where lasing occurs due to nanoscale ampli�cation of dark plasmons has led to a suite
of recent experiments focusing on the smallest plasmonic lasers, targeting colloidal
metal particles with gain [13] as well as hybrid plasmon modes con�ned in a narrow
gap between a metal �lm and II-VI or III-V nanowires that provided the gain [14–19].

Aside from efforts to realize the highest possible �eld enhancements in narrow
gaps of single structures, many efforts in plasmonics have been devoted to light-matter
interaction in oligomers of scatterers and periodic lattices. Indeed Yagi-Uda phased
array antennas [20–24], Fano resonant oligomers [25–29] and periodic lattices [30–36]
are among the most practical structures not only to control �eld enhancement but also
to obtain a balanced trade off between enhancement, Ohmic loss, and directivity control
for emitters. In particular, in diffractive lattices single particle plasmon resonances
can hybridize with Rayleigh anomalies or with planar waveguide modes to form
extended collective modes [37]. These systems have been shown to be very practical
for improving broad area emission devices such as LEDs and phosphors, allowing
simultaneous control over emission directivity and rate, at much lower losses than
offered by single particle resonances [30–33]. The picture that has emerged is that
plasmonic structures can on one hand signi�cantly enhance emission brightness from
intrinsically very inef�cient emitters by use of Purcell enhancement as a means to
help radiative decay to outcompete nonradiative processes. On the other hand, in
realistic application scenarios for solid-state lighting, already very ef�cient emitters
can not bene�t from plasmonics through Purcell enhancement, but do bene�t through
plasmonic band structure effects that ensure redirection of light into select angles. In
this case, the most ef�cient redirection is obtained through extended, not strongly
localized, plasmon modes.

In the context of lasing, diffractive plasmon lattices were �rst studied by Stehr et
al. [38], who reported a metallic particle grating based laser and showed linewidth
narrowing and threshold behavior in these systems. A complementary geometry was
reported very recently by van Beijnum et al. [39] who demonstrated a plasmon lattice
laser based on hole arrays in gold paired to a III-V quantum well gain medium. Suh et
al., and Zhou et al. [40, 41], �nally, reported on lasing in bow tie and nanodisk arrays,
i.e., in particle arrays similar to those reported by Stehr et al. [38] As in the case of
spontaneous emission enhancement, plasmonic effects can impact lasing through two
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effects. On one hand, Purcell enhancements and near �eld enhancement can accelerate
emission dynamics. On the other hand, even in absence of strong Purcell enhancements
the formation of a plasmonic band structure with large stop gaps could modify the
distributed feedback mechanism. The work of Suh et al. and Zhouet al. [40, 41]
focused particularly on the role of plasmonic Purcell enhancements in lasing, for which
reason an intrinsically very poor ef�ciency gain medium was chosen. Thereby, only the
dye in very close proximity to the metal that experienced rate enhancement participated
in the lasing. Here we focus on the more application relevant scenario of plasmonic
lasing in an ef�cient gain medium, in which case the main questions that arise are
how the band structure of plasmonic lattice lasers differs from that of conventional 2D
distributed feedback (DFB) lasers due to the plasmonic nature of its constituents, and
how the trade off between much larger scattering strength and disadvantageously large
loss of metal particles in�uences the lasing behavior.

In this Chapter we report a comprehensive lasing study on particle array lasers
fabricated from square lattices of silver (Ag), gold (Au) and as non-plasmonic reference
titanium dioxide (TiO2) embedded in a dye-doped polymer that at the same time acts
as gain medium and supports a waveguide mode. We aim at uncovering what the
band structure and lasing conditions of such systems are as a function of scattering
strength (highest for Ag particles) and loss (highest for Au particles). Therefore we
use a high ef�ciency dye as would be used in prospective solid-state applications, and
operate in a regime where the effects of Purcell enhancements are expected to be small.
To answer these questions we have implemented a new measurement technique to
map below-threshold emission and lasing in energy-momentum diagrams that can be
acquired in a single shot in our sub-nanosecond optically-pumped setup, and that span
the entire angular collection range of a high-NA objective. We analyze the plasmonic
band structure and for Ag arrays �nd stop gap widths far in excess of those in dielectric
DFB lasers and similar to those in the reported metal hole array laser of van Beijnum
[39]. The Chapter is structured as follows. In section 2.2 we explain the setup, materials
and measurement procedure. In section 2.3 we present emission spectra, measured
2D Fourier space distributions of emission and energy-momentum diagrams, all below
and above threshold. In section 2.4 we interpret our band structure measurements in
terms of calculated single particle scattering properties obtained from �nite element
simulations, and in terms of calculated angle-dependent extinction obtained with a
rigorous coupled wave analysis (RCWA) method.

2.2 Experiment

Sample fabrication

We use Menzel glass cover slides of 24 x 24 x 0.17 mm that have been cleaned in a
solution of H2O, H2O2 and NH4OH at 75±C. After cleaning, we spincoat a positive
resist to de�ne our structures. For this we use the electron beam resist ZEP520 diluted
in a ratio of 5:2 with anisole for which spincoating at 1500 rpm results in a layer
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Figure 2.1: (a) Schematic of the setup. We illuminate the sample with laser light
(¸ =532 nm) from the glass side. We measure the �uorescence using the CCD and
spectrometer. Right after the laser there are two lenses (1 and 2) that constitute a
telescope to increase the beam diameter. After re�ection of a mirror, there is an epi-lens
(3) followed by a �lter cube (4) that contains the dichroic mirror and a long pass �lter,
allowing only �uorescent red light on the detector side. On the right side of the �lter
cube there is a �ippable fourier lens (f=200 mm)(5) followed by a tube lens (f=200
mm)(6). The objective is mounted in a specially designed microscope mount (7). Not
shown in the image are the AOM, together with a polarizer just in front of the telescope,
to tune the laser power. In (b) we show a schematic of the objective with the sample.
In (c) a scanning electron micrograph of one of the fabricated particle arrays is shown.

thickness of 150 nm. With electron beam lithography we de�ne hole arrays in a square
pattern using dot exposures between 0.001 pC and 0.002 pC using an electron gun
voltage of 20 kV and a current of 0.031 nA. We vary the lattice constant from 350 nm
to 500 nm in steps of 10 nm. The hole size is 100 nm. The hole arrays are 200¹ m in
size so that in optical experiments explained below, the arrays exceed the optical pump
spot in diameter. To fabricate silver particle arrays we subsequently deposit 2 nm of
chromium followed by 30 nm of silver by thermal evaporation, performed at a pressure
of Ç 10¡ 6 at an evaporation rate of 0.5-1 Å/s. For the titanium dioxide samples we
directly deposit 30 nm of titanium dioxide using electron beam deposition. We perform
lift-off by immersing the samples in N-methyl pyrrolidone (NMP) at 65± for 5 minutes.
For silver, lift-off is achieved by leaving them overnight at 50± in anisole, as NMP
degrades silver. After lift off the samples are rinsed in isopropanol and blow dried
with nitrogen. Figure 3.1c shows an Ag particle array resulting from the fabrication
procedure.
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To obtain a waveguide with gain, we use the negative photoresist SU8 and dope it
with rhodamine 6G by mixing 5.25 mg of Rh6G perchlorate with 1 mL of cyclopen-
tanone (the solvent for SU8). The cyclopentanone with Rh6G is added to 1 ml of
SU8-2005, after which we ultrasonicate the solution for 10 minutes. The �nal solution
has a Rh6G perchlorate concentration of 0.25 wt%. We spincoat the SU8 solution on
the particle array samples at 3000 rpm, resulting in a 450 nm thick SU8 layer. This
thickness results from a tradeoff between two requirements: on one hand suf�ciently
small thickness to ensure single waveguide mode operation, and on the other hand
suf�ciently large thickness to ensure good mode overlap with the gain medium. After
spincoating, we bake the samples for 2 minutes at 95±C to evaporate the excess
cyclopentanone. Prepared as such, the SU8 is not cross-linked, enabling removal of the
SU8 layer with acetone after performing measurements on the samples.

Experimental setup

We use an inverted �uorescence microscope as shown in �gure 3.1(a). In this setup,
the sample is mounted with the glass side down (close up sketch panel (b)), and both
pump and detection occur through the objective, i.e. from the glass side. We use a
home-built microscope tower, the most important pieces of which are an objective
(Nikon, Plan Apo̧ 100x /1.45 NA) �xed to the microscope frame and a sample mount
that can be translated in XYZ relative to the objective using micromechanical and
piezo controls. The sample is pumped using a 532 nm pulsed laser (Teem Photonics,
type STG-03E-1S0) which has a pulse width of 500 ps and a maximum energy per
pulse of 4.5¹ J. We use an epi-lens in the pump path, resulting in a parallel beam
with a diameter of 70¹ m emerging from the objective. The laser power is computer
controlled by an acousto-optical modulator (AOM). We monitor the resulting pump
power in real time with a home built pulse integrator. To �lter out unwanted re�ected
pump light the �uorescence is sent through a long pass �lter (Chroma, HHQ545lp) after
passing the dichroic mirror (Semrock, Di01-R532-25x36). Fluorescence is detected by
either a thermoelectrically cooled (Andor CLARA) Si CCD camera or a Shamrock303i
spectrometer with an (Andor Ivac) Si CCD detector. To focus the light on the CCD
and spectrometer entrance slit, we use an f=200 mm tube lens. The pump laser can �re
single pulses allowing single shot measurements when triggering the laser, CCD and
spectrometer simultaneously. Single shot exposure minimizes sample damage caused
by bleaching of the Rh6G when performing a sequence of measurements for varying
pump power. In addition to collecting images and spectra in real space, we do fourier
imaging by adding a lens on a �ip mount at a focal distance from the back focal plane
of the objective [42–47].

Fourier imaging maps the back focal plane of the objective onto the CCD camera,
providing direct information on angular emission. The high NA objective (NA=1.45)
allows for a large maximum collection angle ofµ Æ73± in glass, enabling us to image
a large part ofk jj space. We note that the 2D back focal plane images we collect in
this fashion on the Clara CCD camera are panchromatic images, i.e., not separated in
spectral components. Ideally one would measure a spectrally resolved Fourier image,
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since a spectrally resolved fourier image would be a direct map of the dispersion
diagram. This can be done by scanning a �ber which is coupled to a spectrometer
through the entire fourier image, or by imaging a slice of the fourier image centered
at kx=0 onto the slit of an imaging spectrometer [48]. As we aim at single-shot
measurements the latter method is preferred. The Andor IVAC camera contains a CCD
chip with 200 x 1650 pixels. To make spectral fourier images we set the spectrometer
imaging mode to full imaging resulting in a full spectrum for 200 points along thek y

axis.
For every particle array we start by taking fourier images of the �uorescence of

single pump pulses as a function of input power by increasing the AOM voltage linearly
in 200 steps from 0% to 50% of its maximum value. Subsequently, we �ip in the mirror,
sending the light to the spectrometer. We center the fourier image on the spectrometer
slit by fully opening the slit, observing the image in 0th order and moving the fourier
lens transversally until the circular fourier image is in the center of the image of the
slit. For fourier spectra, we need to add the �uorescence resulting from 50 pulses
because the light is spread over a large detector area. We �nd that 50 pump pulses
do bleach the sample noticeably for higher pump powers. To make sure we see clear
signs of lasing before the sample has bleached, we start with high pump powers (above
lasing threshold) at an AOM percentage of 50% and go down in 200 steps to 0%.
From the fourier spectra we calculate real space spectra by integrating overk y for each
wavelength. Because of bleaching the threshold pump powers deduced from the fourier
images are slightly lower than the threshold we �nd from the fourier spectra.

2.3 Results

Spectra

Figure 2.2(a) shows a waterfall plot of spectra for increasing pump pulse power for a
silver particle array with a pitch of 380 nm and particle diameter of 100 nm. These
spectra are obtained by applying full vertical binning over the central part of the fourier
image, thus including all angles along thek y axis. At a pump pulse energy of 59
nJ (corresponding to a pulse irradiance of 1.53 mJ/cm2) a clear peak emerges at a
wavelength of 589 nm which dominates the emission spectrum for all higher pump
powers. This can be seen more clearly from the inset of �gure 2.2 where we plot a
spectrum just below (red graph) and just above lasing threshold. The onset of the sharp
peak is characteristic of lasing and the pump power at which it occurs is the lasing
threshold. From the inset it can be seen that the lasing peak linewidth is on the order of
a nanometer which is limited by the resolution of the spectrometer.

To construct a threshold curve, we de�ne emission power as the total number of
CCD counts under the lasing peak visible in �gure 2.2(a), where we integrate over
three spectral bins, corresponding to a total bandwidth of 0.5 nm. Figure 2.2(b) shows
the emission power versus pump power. The lasing threshold can be recognized by a
sharp kink at a pulse energy just below 60 nJ. The pulse energy density required to
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Figure 2.2: (a) Plot of emission spectra for different pump powers measured by
imaging an Ag particle array (pitch 380 nm, particle diameter 100 nm) onto the
spectrometer slit measured upon excitation with a single pump pulse. A clear threshold
behaviour can be seen from the sharp peak occurring for pump powers above 59 nJ.
Panel (b) threshold curve, plotting the area under the lasing peak versus pump pulse
enery. The inset shows two spectra just above and just below threshold.
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2 Lasing at the band edges of plasmonic lattices

reach threshold is thus around 1.53 mJ/cm2. This pulse energy density is comparable
to that reported for plasmon particle arrays in a non-waveguiding polymeric gain
layer by Zhou et al. [41], although that laser operated much further into the infrared.
These thresholds are approximately 10 times above those typically required for purely
polymeric DFB lasers, such as the 2D MEH PPV DFB laser reported by Turnbull
[49]. Finally we note that Stehr et al. [38] reported thresholds about equal to those
of Turnbull et al.[49] for a gold particle array plasmon laser in a poly paraphenylene
matrix. Besides possible differences in gain coef�cient, two possible explanations
are the presence of ohmic damping in the plasmonic particles and the much stronger
outcoupling through scattering that plasmon particles offer.

Fourier images

In addition to measuring spectra as a function of pump power, we collect fourier images
of the �uorescence as shown in �gure 2.3 and 2.4, which report Fourier images just
below and just above threshold respectively, for four particle lattices with pitches
d=360, 370, 380 and 390 nm (panels a-d in both �gures). In each �gure, two features
stand out independent of particle pitch. First, we see a high intensity ring where most of
the emission exists, indicating that most below-threshold emission exits at large angles.

Figure 2.3: Fourier images below the lasing threshold for a pitch of a) 360 nm, b) 370
nm, c) 380 nm and d) 400 nm. The color map ranges are [223, 1196], resp. [102, 739],
[128, 941] and [319, 1948]. The reported wave vector axes are normalized to!/c .
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The inner edge of this ring corresponds to an NA of 1 or equivalently, to the critical
angle of the glass-air interface. The outer edge is set by the NA of the immersion oil
objective. That �uorescence is preferentially emitted at angles just above an NA=1 is
a well known feature for emitters on a glass-air interface [43, 48, 50], and consistent
with radiation pattern calculations according to chapter 10 of Ref. [50], which show
radiation patterns peaking at the critical angle of the glass-air interface.

Second, we see higher intensity circles, displaced from the center and repeating
in thekx andk y direction with a �xed period that changes with particle pitch. Indeed
based on the wave vector scale calibration of our images we can con�rm that the
Fourier space periodicity corresponds to a square lattice with2¼

d period, i.e., to the
reciprocal lattice of our structure. Based on the absolute wave vector scale calibration
of our images, we can also convert the radius of the circles into a propagation constant.
We �nd kcircle /(!/c ) Æ1.52§ 0.03 , where the factor 1.52 corresponds very well with
the calculated mode index for the fundamental TE and TM guided mode of the SU8
layer as calculated from Eq. 4.4 and 4.17 in Ref. [51].

Figure 2.4: Fourier imagesjust above the lasing threshold for a pitch of a) 360 nm, b)
370 nm, c) 380 nm and d) 400 nm. The color map ranges are the same as in �gure 2.3.
Note the appearance of the narrow feature in the center of all images, which shows the
onset of lasing emission. The reported wave vector axes are normalized to! /c .
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2 Lasing at the band edges of plasmonic lattices

Figure 2.5: Fourier spectra for 4 different pitches, just below threshold (a-d) and just
above threshold (e-h), and a schematic of a general banddiagram (i). Measurements
are for a pitch of 360 nm (a and e), 370 nm (b and f), 380 nm (c and g) and 400 nm (d
and h). The maximum value of the color bar are set at 230, 200, 200 and 250 counts
respectively, in (a-d). Above threshold the maximum value of the colorbar is 230, 250,
200 and 300 counts, respectively (panels e-h). All colorbars start at 0. Note the lasing
emission that appears as a narrow feature atk jj Æ0 (The horizontal lines across the
diagram, surrounding the lasing peak, are CCD blooming artifacts). For clarity we have
indicated the lower and upper stop band edge for second order diffraction by white
arrows in panel (f). Lasing occurs at the lower edge.
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Band diagrams

Overall the �uorescence Fourier pattern is a direct, single-shot CCD image of the
repeated zone scheme iso-frequency surface of the waveguide mode dispersion that is
well known to occur for periodically corrugated waveguides [52–55]. In other words,
due to in-plane Bragg scattering that couples anyk jj into k jj Å G, the circular dispersion
relation ! , k jj of the waveguide mode of index n=1.52 repeats at every reciprocal
lattice pointG. We expect that for each intersection of circles an anti-crossing should
be visible, as the �nite scattering strength of the plasmon particles should open up
noticeable stop gaps in the nearly free photon dispersion approximation. However, any
stop gaps that may occur at the crossing points are obscured in these images due to
the fact that spectral averaging limits their sharpness. To overcome this problem we
use the spectral imaging procedure described in the experimental section which gives
us full dispersion diagrams of the emission over the entire detectablek y range. The
resulting!, k y diagrams are shown in �gure 2.5(a-d, just below threshold) and �gure
2.5(e-f, just above threshold). Again we can see high intensity bands corresponding
to the high intensity ring in the fourier image. In addition, we distinguish a pair of
steep straight lines that cross at the¡ point (k y Æ0) at a frequency of3.4¢1015 rad¢s¡1

for d Æ360 nm. Furthermore, a parabolic band with minimum at (or just above) the
crossing of steep lines is evident, that has its minimum at or just above the crossing
of steep lines. These features can be understood by looking at a generic dispersion
diagram respresenting the folded free-photon dispersion, as indicated in �gure 2.5i.
The straight lines that begin at the origin are the linear waveguide dispersion.

At the �rst order Bragg conditionk y Æ¼
d , the free-photon dispersion copies shifted

alongk y by 2¼
d fold back into the �rst Brillouin zone. At twice this frequency the

second order diffraction condition is met, as is evident from the fact that the folded
dispersions again cross (straight lines). For a square lattice at the same frequency the
diffraction condition is met from the grating vectorGÆ( 2¼

d ,0) perpendicular to thek y

axis. This diffraction leads to the parabola. When the particle pitch increases, the �rst
order Bragg condition is met at a lower frequency and all features move down as the
waveguide mode circles repeat with a larger period. In �gure 2.5(e-h) we show fourier
spectra just above the lasing threshold. Lasing spots are visible as high intensity spots
that occur exactly at the crossing point of the lines with the parabola. This corresponds
to the second order bragg diffraction condition. Qualitatively this behavior is exactly
as generally observed for 2D DFB lasers [38, 41, 49]). In �gure 2.5(h) we can see
that there is also lasing on the third order bragg condition, as the frequency for the
3rd order condition has moved down into the gain window of Rh6G for a pitch of 400
nm. Polarization dependent measurements reveal that the lasing mode is a TE mode,
corresponding to what has been reported in literature for dielectric DFB lasers [56, 57].

Broadly speaking, it appears that the Ag particle array laser is close to a standard
DFB laser in that it operates at the lower edge of the second diffraction stopgap at
k jj Æ0 (stop gap edges indicated by white ticks in panel 2.5(f)). We now ask how
the plasmonic nature of the Ag particles modify the DFB characteristics compared
to a dielectric DFB laser [30, 59]. In order to probe this question we compare three
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Figure 2.6: In a) the relative size of the stopgap is plotted for Ag (blue dots), Au
(red triangles) and TiO2 (green squares) together with literature values of van Beijnum
[39] (black), Turnbull [49] (purple) and Noda [58] (red). In addition, �uorescence in
the ! , ky plane is plotted for Au (b), Ag (c) and TiO2 (d) for a pitch of 370 nm. The
maximum values of the colorbar are 550, resp. 250 and 300 counts in panels (b-e), with
colorbars starting at 0. The plots are made just above the lasing threshold, meaning
pump powers differ from panel to panel. The pump powers are 944 nJ (Au), 99.5 nJ
(Ag), and 38 nJ (TiO2), respectively. The noteably larger pump power for Au results
in a much higher background �uorescence level as is visible for a frequency range
centered at the the Rh6G emission peak in �gure b.

systems, namely (1) the Ag particle arrays, (2) arrays of the same pitch of dielectric
TiO2 particles, and (3) Au particles that should show stronger absorption yet weaker
scattering than the Ag particles. In �gure 2.6 we compare the dispersion diagram for
a DFB laser with silver scatterers with a DFB laser that uses TiO2 and Au particles,
for a particle pitch of 380 nm and a particle size of 150 nm and 100 nm, respectively.
For TiO2 we used larger particles of 150 nm diameter, as the TiO2 particle arrays with
particle sizes of 100 nm did not show lasing. This we assign to the weak scattering
strength of 100 nm TiO2 disks. Indeed, numerical analysis reported below of scattering
cross sections show that TiO2 scatterers of the same volume have a scattering strength
at least 10 times lower than metal particles. Two clear differences are visible between
�gure 2.6(c) and �gure 2.6(d). For the TiO2 sample, the parabolic band appears to
be a single feature, as expected from �gure 2.5(c). However, strictly speaking the
parabolic band is degenerate, originating from both the (1,0) and (-1,0) diffraction
order. Remarkably, for the Ag particle array this degeneracy is distinctly split, pointing
at the strong scattering strength of Ag particles. Figure 2.6(b) shows the measured
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dispersion diagram for an Au array. Evidently, the bands are broad, at least as much as
in the Ag case, but not clearly split, as in the TiO2 case. This points at the higher loss,
yet weak scattering strength at 590 nm, of Au particles compared to Ag.

For dielectric photonic crystals, relative stop gap width¢!/! 0 is frequently used
as a dimensionless parameter to sort photonic crystals by their photonic interaction
strength [60–62]. In that case the relative stop gap width is proportional to the ratio
of scatterer polarizability to unit cell volume. In real space terms, the stop gap width
provides a direct measure for the Bragg length (number of lattice planes required
for 1/e diffraction ef�ciency), the crystal size needed to develop a signi�cant LDOS
suppression, and the crystal size required to achieve LDOS enhancement of mode
density at a band edge of any signi�cant magnitude and over signi�cant bandwidth
[60–62]. On this basis, we use the width of the stopgap to quantify differences in the
dispersion diagram for different plasmonic laser systems. Figure 2.6(a) shows a plot
of the relative size of this stopgap as a function of particle pitch for Ag, Au and TiO2.
The horizontal lines indicate relative stopgap values reported by van Beijnum [39]
(black), Turnbull [49] (purple) and Noda [58] (red)for a plasmonic hole array laser, a
non-plasmonic DFB laser, and a photonic crystal band edge laser in a 2D semiconductor
membrane. The blue dots for Ag show that the relative bandgaps are large compared
to reported values for dielectric systems and approach the value reported for the
plasmonic laser of van Beijnum [39]. The red triangles and green squares represent
relative bandgaps for TiO2 and Au. For these two materials the stopgaps are smaller
than the width of the band and therefore are essentially zero. To conclude, the Ag
particle array DFB lasers are markedly different from the nonplasmonic lasing systems,
and due to the strong scattering the diffractive coupling in the dispersion relation
is as strong as in the plasmonic hole array laser. Ideally to verify if the correlation
between stop gap width and sample geometry is exclusively with scattering strength (or
`polarizability', as in the photonic crystal case) one would need to independently vary
physical particle volume at �xed optical volume (polarizability), or vice versa, in an
otherwise �xed gain medium. Unfortunately, this will be dif�cult to realize: while our
data clearly show that the nonplasmonic TiO2 particles of equal physical volume are so
weakly scattering as to give neither stop gap nor lasing, a larger optical volume at �xed
physical size than for the silver particles can not be realized in the gain window of our
dye. Somewhat larger optical volume could be reached with either Ag or Au particles
by increasing their size, however only at strongly redshifted resonance frequencies.

Finally we note that in order to cross the lasing threshold, the Au samples typically
require at least ten times higher pump �uence (0.066 mJ/cm2 versus 1.107 mJ/cm2 for
the example in �gure 2.6). This �nding is consistent with the much more advantageous
Ohmic loss of Ag versus Au, which for Au nanodisks means a much lower scattering
strength and a much lower albedo. Regarding the comparison between thresholds of the
TiO2 sample with the thresholds of Ag and Au samples, we have to note that a direct
comparison is hampered by the fact that the much lower scattering strength of TiO2

disks means that much larger particles were required than for the plasmonic samples to
reach the lasing transition at all. Generally, most all-dielectric samples that actually
lased (particle diameters above 150 nm) had lower thresholds than their plasmonic
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counterparts. This �nding indicates that TiO2 offers low loss, yet also a much weaker
per-particle cross section contributing to feedback.

2.4 Theory

Single particle scattering

We use COMSOL to determine the extinction cross sections for single particles. In
�gure 2.7 we plot the extinction cross section for Ag, Au and TiO2 for two different
incidence conditions. In �gure 2.7(a) anx-polarized plane wave is incident along the
z-direction (parallel to the symmetry axis of the particle disk). In �gure 2.7(b) an
x-polarized plane wave is incident along they-axis. We used an index ofn Æ1.65 for
SU8 as the surrounding medium. For the permitivity we use a modi�ed Drude model
�tted to the optical constants of Johnson and Christy [63]:

² r Æ² 1 ¡
! 2

p

! ¢(! Å i °)
(2.1)

For Au we use² 1 Æ9.54, ! p Æ1.35¢1015 rad/s, and° Æ1.25¢1014 rad/s and for Ag
we use² 1 Æ5.43Å 0.55i , ! p Æ1.39¢1016 rad/s, and° Æ8.21¢1013 rad/s, as reported in
Ref. [64].

Both Ag and Au exhibit a clear resonance which is completely absent for TiO2. In
addition, one can see that the peak of Ag is blue shifted with respect to the resonance
peak of Au. The lasing frequencies for the studied 4 particle pitches are indicated by
the squares. For a plane wave along the y-direction we can distinguish 2 peaks, where
the smallest peak (at higher frequencies) corresponds to the quadrupolar resonance.

Figure 2.7: Extinction cross sections for Ag, Au and TiO2 as a function of! obtained
using COMSOL. The z-axis is de�ned as the axis parallel to the symmetry axis of the
particle disks. In plot a) the plane wave is incident along the z-axis and in plot b) the
plane wave is incident from the side of the particle, with polarization in the plane of
the particle. For clarity the curves for TiO2 are scaled by a factor 10 as indicated.
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For incidence normal to the disks, as would be the case in transmission experiments
that probe the sample under normal incidence, no quadrupole response is noticeable.
However, for the distributed feedback in-plane scattering of the TE-polarized waveguide
mode is important. This distributed feedback hence might bene�t from the quadrupole
response for enhanced scattering and near �elds.

Band structure

Finally we have calculated the band structures of the plasmon gratings embedded in the
waveguide structures as they would appear in extinction, using rigorous coupled wave
analysis (RCWA) that is optimized for 2D periodic and strati�ed problems. In particular,
we have used the freely available implementation “S4" by Liu and Fan [65] of the
Fourier Modal Method developed by Li [66, 67], that uses the appropriate factorization
rules for high index contrast gratings. While convergence can be notoriously poor
for metallic gratings, we found excellent convergence when using parallelogrammic
truncation. We used a truncation to 361 plane waves. We setnSU8 Æ1.65 and take the
particle sizes and dielectric constants as in COMSOL. The index of the glass substrate is
set to n=1.51, while we take as waveguide thickness 450 nm. Again, we use the Drude
model to describe the permittivity of Ag and Au. We obtain extinction as a function
of incidence angle, resulting in the extinction dispersion diagrams shown in �gure
2.8. While the Fourier modal method is a fully vectorial method that takes coupling
between Bloch harmonics of all polarizations into account, here we report speci�cally
on extinction in the case of s-polarized incidence, corresponding to coupling to TE-
waveguide modes. This choice is motivated by our observation of the polarization of the
lasing mode, and is commensurate with 2D DFB lasing in dielectric structures [56, 57].
Both the Ag and Au lattice show a band of high extinction atk jj Æ0 close to! Æ2.5¢1015

rad/s, where as expected the gold array is redshifted compared to the Ag array. This
extinction band corresponds to the single particle dipole resonance. Compared to �gure
2.7, �gure 2.8 shows single particle resonances slightly red shifted as in S4 simulations
in�nite particle arrays are considered. When the interparticle distance is comparable
to the wavelength, longitudinal coupling between the individual dipole scatterers is
known to cause the observed red shift [68]. The higher extinction due to the single
particle resonance couples to the waveguide mode [59], leading to anticrossings atk jj

along the straight lines corresponding to the backfolded waveguide mode dispersion.
This anticrossing was observed experimentally by Rodriguez et al. [32]. At 3.2¢1015

rad/s and above there are the expected parabola and straight lines from the folded
free-photon dispersion discussed in the experimental results. In this part, we can see
two clear differences between Au and Ag. First, the parabola for silver is broader than
that of gold. Second, at the crossing point of the parabola with the straight lines a clear
avoided crossing can be seen for silver, whereas for gold the¡ point does not show
a gap and corresponds with the folded free-photon dispersion. The complex avoided
crossing that lifts the degeneracy between the two parabolas for silver can be seen
more closely in the inset in �gure 2.8(b). While the single particle resonance is broad
(Q=4.4), the hybrid modes resulting from coupling of waveguide mode and plasmon
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Figure 2.8: Extinction as a function of kjj and! for gold (a) and silver (b) calculated
with S4. Evident for both diagrams are 1) the high extinction region for lower! ,
corresponding to the single particle resonance, and 2) the generic folded band diagram
features (lines and parabola's). For silver a clear stop gap is visible at the¡ point
(k jj Æ0) that is not apparent in the diagram for gold. The inset shows a zoom in of this
region, highlighting the intricate anticrossing with the two parabolic bands.

have Q> 150, i.e., damping much less than the single particle radiative damping.
Returning to a comparison with the measurements we conclude that the theory

reproduces all the salient features. For the gold particle lattices, the scattering strength
per particle is low. Consequently in both theory and data, the stop gap width is small.
For the silver particle lattice, however, the scattering strength per particle is much
higher and consequently in both theory and experiment a clear stop gap opens up at the
second order diffraction, and the degenerate parabolas split, and broaden. Based on the
single particle response we surmise that the precise coupling strength that splits the
bands at3.2¢1015 rad/s and above is dependent on the quadrupole response. Finally we
note that we also calculated dispersion for TiO2 particle lattices. As in experiment, the
calculated dispersion (not shown) only shows narrow features that essentially coincide
with the folded SU8 waveguide dispersion.

2.5 Conclusion and outlook

Overall, it is remarkable that despite their loss, silver particle array lasers provide lasing
characteristics reasonably competitive with dielectric DFB systems, commensurate with
the established notion that the extended diffractive modes that plasmon arrays support
well off their individual resonance frequencies are promising for balancing loss and
light matter interaction strength. Furthermore, our results and experimental methods
open up many questions for further study. To start, it would be very interesting to sweep
the diffraction condition and gain window onto the plasmon resonance frequency. This
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allows to continuously trace how lasing occurs along the transition from a weakly
coupled plasmon-waveguide hybrid system to a purely plasmonic mode. Second, if one
could probe lasing in a given system for gain media of different quantum ef�ciencies,
one could further clarify the role of high Purcell factors near metal particles in lasing
plasmonic lattices. In our work, we estimate that less than 1% of emitters is within
20 nm of metal, i.e., is in a position where Purcell enhancement might occur. Since
we use an intrinsically already highly ef�cient, bright, emitter, there is no measurable
Purcell enhancement, and in fact those dyes that experience rate enhancement likely are
renderedlessef�cient contributors to the lasing process due to quenching. This should
be contrasted to the work of Suh et al. and Zhou et al. [40, 41]. Third, by signi�cantly
reducing the pitch, one enters the `lasing spaser' regime proposed by Zheludev et al.
Zheludev et al.[69] proposed that when plasmon resonators with gain are arrayed with
pitch much smaller than the wavelength, lasing will not occur on a diffraction condition,
yet coherence will be established to give lasing emission normal to the lattice plane.
Generally we expect that if a dense metasurface would lase, it would do so on the
lowest loss mode in the wave vector diagram. Hence this regime directly necessitates a
deep study of the dispersion relation of collective modes in metamaterials. Finally, an
obvious extension of our work is to study aperiodic systems [70–72]. Previous studies
have shown that aperiodic and quasiperiodic systems, as an intermediate state between
order and disorder, have modes that are neither Bloch states as in a periodic lattice, nor
exponentially localized states as in a random array, but exhibit 'critical modes' that
show strong spatial �uctuations in �eld amplitude [70, 73]. It would be interesting to
study these critical modes in the context of lasing.
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3
Band structure in plasmonic lattice lasers

We study lasing in distributed feedback lasers made from square lattices
of silver particles in a dye-doped waveguide. We present a systematic
experimental study of the band structure underlying the lasing process
as a function of the detuning between the particle plasmon resonance
and the lattice Bragg diffraction condition. To this end, we use as gain
medium either polymer doped with Rh6G only, or polymer doped with
a pair of dyes (Rh6G and Rh700) that act as Förster energy transfer
(FRET)-pair. This allows for gain at either 590 nm, or near 700 nm when
pumped at 532 nm, compatible with the achievable size-tunability of silver
particles embedded in the polymer. By polarization-resolved spectroscopic
Fourier microscopy we measure the plasmonic/photonic band structure,
unravelling both the stop gap width, as well as the loss properties of the 4
involved bands, at �xed lattice Bragg diffraction condition and as function
of detuning to the plasmon resonance.

3.1 Introduction

Organic distributed feedback lasers have been widely studied since the mid-nineties
for their ability to provide broad area lasing upon optical or electrical pumping, while
being cheap to fabricate [1]. Such lasers generally consist of an organic gain medium
that is deposited as a thin layer on a dielectric periodically corrugated surface, with a
periodicity chosen such that if offers an in-plane Bragg diffraction condition within the
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gain window [2, 3]. A wide range of emission wavelengths can be chosen through the
availability of a vast range of organic �uorophores and �uorescent polymers, while the
relevant, usually weak, perturbative, corrugations can be realized, e.g., through optical
lithography, or soft imprint lithography [4, 5].

More recently a different class of lasers was proposed in the domain of plasmonics.
Plasmonics revolves around the fact that free electrons in metals offer a collective
resonance at optical frequencies [6]. This causes metal nanoparticles or nanostructured
surfaces to provide highly enhanced and strongly localized electromagnetic �elds
upon irradiation, and to provide large spontaneous emission rate enhancements when
coupled to nearby �uorescent sources [7–9]. When such plasmonic particles are
placed in two-dimensional diffractive periodic arrays, they further provide control
over emission directivity and brightness due to a hybridization of localized plasmonic
resonances, and grating anomalies associated with the array [10–12]. In particular,
these systems have been studied as substrates for Surface Enhanced Raman Scattering
(SERS) [13], for sensing [14, 15] and for solid-state lighting [16]. Recently, several
groups [17, 18] have shown distributed feedback lasing in such plasmonic periodic
systems. A main difference with conventional dielectric feedback lasers is that while
conventionally the dielectric perturbation is weak and non-resonant, for plasmonic
systems the scattering strength per unit cell of the lattice is very strong, and moreover
presents a resonance. For a periodically corrugated waveguide with a weak periodic
grating the mode structure is well understood through coupled mode theory as a "nearly-
free photon" bandstructure with very narrow stop gaps [19]. However, for plasmonics
the strong scattering strongly modi�es the band structure. One practical advantage is
that strong scattering implies broader stop gaps, which corresponds to smaller Bragg
scattering lengths, or equivalently, much smaller required device sizes for lasing, and
large robustness to disorder.

In Chapter 2 we presented the �rst experimental observation of the plasmonic
band structure underlying lasing in a plasmonic lattice laser. However, in that study,
the plasmonic particles were off resonance with the gain window and with the lasing
condition set by the lattice periodicity. Here we overcome this limitation, and present a
systematic study of the band structure underlying lasing as the plasmon resonance is
tuned to the lasing condition. We identify a systematic dependence of the stop gap width
on scattering strength of the particles. Moreover, we �nd that as the plasmon resonance
crosses through the lasing condition, the loss characteristics of bands interchanges,
and as a consequence also the stop gap edge at which lasing condition occurs moves
from the low to the high end of the gap. These �ndings are in excellent accord with an
electrodynamic point dipole model that accounts for near �eld and far �eld interactions
between the particles as mediated by the waveguide structure.

3.2 Choice of sample geometry

Our experimental system (Fig. 3.1) is composed of silver particle arrays in a square
periodic array, that have been fabricated by electron beam lithography on standard
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3.2 Choice of sample geometry

Figure 3.1: Schematic of the set up (left), a sample (upper right), and a typical
threshold plot (lower right image). The set up is a simple �uorescence microscope. The
simpli�ed sketch shows the objective through which we excite and detect, the dichroic
mirror (green), the fourier lens, a �ip mirror to select either the spectrometer or the
CCD camera and the tube lenses. Single shot excitation is done with a green laser
(532 nm). An epilens is used to focus the excitation light into the back focal plane of
the objective, so that we obtain wide �eld illumination at the sample. The resulting
excitation spot has a diameter of 70¹ m. The samples consist of square silver particle
nanodisk arrays fabricated on a coverslip, embedded in a dye doped photoresist. The
plot shows integrated emission intensity as a function of excitation power for the case
of a Rh6G:Rh700 dye mixture, pitch of 460 nm (lasing at 710 nm), and a particle of 74
nm in diameter. A clear lasing threshold is visible at 12 nJ.

glass coverslip (Menzel, borosilicate), and that are embedded in a high index polymer
layer (SU8). We study cylindrical particles with varying diameter (about 60 to 120
nm), and a height of about 30 nm, deposited by thermal evaporation (rate 0.5 Å/s) and
de�ned through a standard lithography and liftoff process using ZEP. After fabrication
the particles are covered in an approximately 450 nm thick �lm of SU8 that is �rst
doped with dye. By ellipsometry we veri�ed that the dye doped �lms have a refractive
index of around 1.60. According to a waveguide mode calculation, the slab supports a
single TE and a single TM mode that both have an effective index of about 1.55. The
dye-doped SU8 �lm is prepared by spincoating from a solution that is prepared by
mixing equal parts of SU8-2005 (SU8 in cyclopentanone, 45% solids, Microchem) and
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cyclopentanone in which the dye is mixed. The dye solutions were prepared to contain
5 mM of Rh6G, as well as Rh700 in 0, 0.5, 3, 5 and 10 mM concentration. If one
assumes that after spincoating only the cyclopentanone remains, this means that dye
concentrations in the �lm are approximately 2.2 times the nominal dye concentrations
we start with. This chapter mainly considers the 5mM/5mM Rh6G+Rh700 samples,
meaning that the gain medium lies just above 700 nm wavelength. For these samples
we use a pitch of 460 nm. We also discuss selected data for samples with Rh6G only,
taken from Chapter 2 with pitches from 360 to 400 nm.

The rationale of these choices is that according to second order Bragg diffraction
the lasing condition will occur aţBragg ÆnWGd , where¸ stands for wavelength in
vacuum, andnWG for waveguide mode index. Thus thed Æ460nm samples should
provide lasing near 700 nm, at the maximum Rh700 emission. As we tune the particle
diameter from 50 to 120 nm, the plasmon resonance will sweep from just above 600
nm towards, and through (diameter 110 nm) the lasing condition. Thus, by tuning the
particle diameter, we will sweep from a strong red detuning between lasing condition
and plasmon resonance to zero detuning. We note that as the particle diameter is
changed, this changes the scattering strength at the lasing conditionbothbecause there
is simply more polarizable matter per particleandbecause the resonance shifts. Since
previously we established that only silver gives advantageous results for plasmon lasers,
owing to the much higher loss in other metals such as gold, this study focuses on silver
particles. We note that with the Rh700 dye, blue detunings are not accessible in the
sense that for even larger particles, the resonance shifts no further, scattering strength
saturates, and multipolar effects set in. As an additional dataset, therefore, we also
present data where we sweep the lasing condition over the blue �ank of the resonance,
and use Rhh6G as gain medium.

3.3 Spectroscopy setup

We perform �uorescence microscopy measurements that are wave vector resolved
[20]. The sample is placed on an inverted optical microscope (Sketch Fig. 3.1). We
use a 100£ Nikon objective, NA=1.45, Plan Apo) and excite in an epi-illumination
con�guration (spot size 40¹ m) using 532 nm light that is offered in a 0.5 ns pulse
(Teem Photonics, type STG-03E-1S0). The energy per pulse used to excite the sample
is computer-controlled via an acousto-optical modulator in the range 0-20 nJ. We
collect wavelength-resolved �uorescence Fourier images by imaging the objective back
focal plane on the entrance plane of an imaging spectrometer (Shamrock 303i), making
sure that the back focal plane image is centered on the slit. A sensitive silicon CCD
camera (Andor iVAC) of 200 by 1650 pixels triggered by the laser pulse controller
allows to collect single shot images of �uorescence as function of emission frequency
! Æ2¼c/¸ and as function of emission wave vectorkx (atk y Æ0). In addition to single-
shot Fourier imaging above and below threshold, we have also performed reference
spectroscopy and �uorescence lifetime measurements on dye-doped �lms without
plasmon particles to calibrate the dye system. In these measurements the light source
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was a ps-pulsed, 10 MHz repetition rate Nd:YVO4 laser (Time Bandwidth products),
and we used a silicon CCD-spectrometer system (Acton 2303i, Pixis 100B) to collect
spectra, and IdQuantique silicon avalanche photodiodes connected to a Becker-Hickl
DPC230 correlator for time-correlated single-photon counting.

It should be noted that in this Chapter we will not deeply discuss anyabove-
threshold data. As example to show that lasing does occur, Fig. 3.1 shows an exemplary
input-output curve, for a sample with particle size2r Æ74 nm in diameter, lasing at
710 nm, using the Rh6G:Rh700 dye mixture as gain medium. We have veri�ed that
for all particle sizes, the systems lased, with a lasing threshold that does not depend
strongly on particle size. Below we will discuss the underlying below-threshold band
structure.

3.4 Spectroscopy of constituents & FRET

Figure 3.2 shows reference results for the gain medium as well as for the plasmon
particles. Figure 3.2 (a) shows the calculated extinction cross section for silver particles
in the glass/SU8/air system of interest, that we performed using �nite difference time
domain software (Lumerical), using a Drude-Lorentz �t to the 200-800 nm range
of optical constants for silver measured by Weaver et al. [21]. Results shown are
for normal incidence from the glass slide, using perfectly matched layer absorbing
boundary conditions on all sides of the domain. Notably, as the particle size increases
the scattering strength drastically increases, and furthermore exhibits the well-known
shift to longer wavelengths due to dynamic depolarization effects [22–24]. For d È
60nm, the dipolar resonance has a distinct Lorentzian shape, and is well separated
from the features at wavelengths¸ Ç 500 nm, that are not due to the material free
electron response. Comparison of the cross sections at the expected lasing condition
nWGd ¼ 710 nm shows that sweeping particle size will sweep the scattering and
extinction cross section from below 0.01 to almost 0.07¹ m2. To put it in perspective,
this cross section goes from 5% to 30% of the unit cell area, and becomes comparable
to the largest scattering strength3/2¼(¸/n )2 ¼0.09 ¹ m2 possible for a dipole scatterer.

Regarding the spectral properties of the dye mixture, Figure 3.2(b) shows emission
spectra at �xed Rh6G concentration, and various Rh700 nm concentrations. Emission
at the short wavelength end is clipped by a 540 nm longpass �lter that blocks the
532 nm excitation light. Evidently the strong Rh6G emission band (550 to 620 nm)
rapidly decreases in intensity as Rh700 is mixed into the �lm, while at the same time
strong emission of the Rh700 dye (650 to 750 nm band) arises. At a one-to-one ratio
(where the nominal dye concentrations prior to mixing with SU8 is 5 mM) the Rh6G
emission has almost completely vanished. For larger concentration of Rh700, the
Rh700 emission decreases, and redshifts. We hypothesize that the disappearance of
Rh6G emission and the appearance of Rh700 �uorescence, that is poorly pumped by
532 nm directly, is a consequence of Förster Resonance Energy Transfer" (FRET),
while the concentration quenching of Rh700 at elevated concentration is due to energy
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Figure 3.2: (a) Extinction cross sections for Ag disks of 30 nm height in SU8 on glass,
according to Lumerical, using tabulated optical constants. (b) Spectra of dye mixtures.
Here the concentration of Rh6G is �xed to 5 mM and the concentrations given in the
�gure represent Rh700 concentrations. (c) FRET ef�ciency curve. The horizontal axis
represents the concentration of Rh700, and the vertical axis represents energy transfer
ef�ciency from the donor to the acceptor. The data points are for a Rh700 concentration
of 0.5 mM, 1 mM, 3 mM and 5 mM, resp. where the Rh6G concentration is kept at 5
mM. (d) Lifetime traces. The solid curves plotted through the data points are FRET
theory where no adjustable parameter is used except a vertical scaling.

transfer between Rh700 �uorophores, after they have received their excitation from
Rh6G.

To verify that excitation of Rh700 is indeed via FRET, we examine spectra and
�uorescence decays. As usual [25] we de�ne the energy transfer ef�ciency as

E Æ1¡
FD A

FD

whereFD is the integrated (detector-corrected) spectral intensity of the donor-only
sample, whileFD A is the integrated spectral intensity of the acceptor. Figure 3.2(c)
shows the energy transfer ef�ciency deduced from the data in (b) as a function of
the nominal concentration (symbols) alongside the textbook prediction forE that is
appropriate for FRET in 3D homogeneous random ensembles [25–27]

E Æ ¡
p

¼°e° 2
(1 ¡ erf°).
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This expression depends only the dimensionless concentrationC/ C0

° Æ
¡(1/2)

2

C

C0
with C0 Æ

µ
4

¼
R3

0

¶¡1

,

where¡ represents the Gamma-function. This expression provides a reasonable �t to the
data for a critical concentrationC0 Æ0.9 mM. Since we quote nominal concentrations in
the dye solutionbeforespincoating and solvent evaporation, the critical concentration
can not be directly translated into a Förster radiusR0 for the Rh6G:Rh700 donor-
acceptor pair in SU8. However, assuming that after evaporation the SU8:dye ratio
remains constant, we can convert the critical concentration to a critical concentration
of 2.2£ 0.9mM in the SU8, which in turn translates to a Förster radius of about 5.5
nm. Since this is on par with expected Förster radii [25], we thus conclude that the
concentration dependence of spectra is consistent with FRET.

As independent check, we have also measured �uorescence decay traces of the
donor emission (donor emission selected by a bandpass �lter). If energy transfer is due
to FRET, decays should be given by [26]

ID (t ) ÆI0exp
£
¡ t /¿ D ¡ 2°( t /¿ D )1/2 ¤

(3.1)

where¿D is the donor decay time. Figure 3.2(d) shows measured decay traces at the
various concentrations alongside the prediction Eq. 3.1 convoluted with the instrument
response function of our setup. We note that for this comparison we only adjust
the overall scalingI0, but adjust neither¿D Æ3.4 ns which is taken from a donor-
only measurement, nor° , which is taken from the spectral data. We note excellent
correspondence, especially given that no parameter except overall scaling was adjusted,
further con�rming FRET.

To summarize this comparison of numerical analysis and data, we identify the
one-to-one 5 mM sample as most suited for our gain measurements as it provides
strong Rh700 emission by FRET from Rh6G pumped by our 532 nm pump laser.

3.5 Polarization resolved band diagrams

Distributed feedback lasing in our samples is understood to originate from lasing into a
waveguide mode of the polymer slab that enjoys Bragg diffraction from the particles [1,
28]. Since the polymer slab supports two modes, the fundamental TE and fundamental
TM mode, it is important to determine on which waveguide mode the system operates.
To this end we have performed band structure measurements on many samples using
a linear polarizer in front of the spectrometer slit. To understand the measurement
scheme, we refer to a sketch of the expected repeated zone scheme dispersion relation
in the limit of weak scattering. Fluorescence is expected to dominantly be emitted into
the waveguide mode, i.e., at (parallel, in plane) wave vectorjk jj j ÆnWG!/c . Since back
focal plane imaging directly mapsk jj /k 0, this would appear on our detector as a ring that
is nWG Æ1.55 times bigger then the free space light cone, if it weren't for the fact that the
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Figure 3.3: (a) Sketch of the measurement geometry: using the spectrometer slit
(overlaid as elongated black frame on a typical 2D Fourier image), we collect a slice at
kx Æ0 of k jj -space. Diffracted modes appear as circles centered at reciprocal lattice
vectors in the back focal plane. As function of frequency the magenta circles will form
the parabola, while the cirles indicated in blue trace out straight lines in the measured
! ¡ k diagrams. If features are due to TE-waveguide modes, the polarization vector is
tangential to the circles. (b) Polarization-resolved dispersion measurements. Figure (a)
and (b) show measurements for a particle pitch of 460 nm and a particle diameter of
86 nm. Panel (c) shows the electric �eld of the TE-waveguided mode, while panel (d)
shows the electric �eld distribution of the TM-waveguided mode. The latter has �eld
Ez perpendicular to the layers, and in-plane �eldEjj along the wave vector.

objective clips the signal tok jj /k 0 Ç 1.45. Bragg diffraction causes the waveguide mode
circle to be replicated every reciprocal lattice vectorGÆ2¼/d(m ,n) (with m,n integer),
so that the back focal plane image appears as a set of intersecting circles of radius 1.55k0.
In our measurement we only collect a slice along one axis (labelledk y), spectrally
dispersing the �uorescence from this slice over the other axis of our CCD camera.
In such a measurement, the diffracted orders±(jkj ¡ k0nmode ) § 2¼/d(0,1) appear as
straight lines that intersect atk y Æ0 for the 2nd order Bragg diffraction conditions. In
contrast, the diffracted orders±(jkj ¡ k0nWG) § 2¼/d(1,0) appear as (two degenerate)
parabola's, that have their minimum at the 2nd order Bragg diffraction condition. If the
dominant waveguide mode is TE (TM) polarized, i.e., tangential (radial) to the mode
circles, this reasoning implies that a polarizer along the spectrometer slit will only pass
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through the parabolic (linear) bands, while conversely the crossed polarizer setting will
select the linear (parabolic) bands.

Figure 3.3(b,c) shows measured!, k diagrams of �uorescence emission below
threshold for polarization settings along and crossed to the spectrometer slit. As
expected, the measurements (summed together) display two linear bands, as well as
the expected parabolic feature, with the area of the band (anticrossing) centered around
2.63¢1015 s¡1 (715 nm, in accord with1.55d). The measurements show that only the
crossed polarizer setting passes the linear bands, whereas the parabolic bands are most
distinct when the polarizer is along the spectrometer slit. This observation con�rms
that while emission might occur into both TE and TM modes, the emission that is
coupled out to free space by the plasmon particles dominantly originates from the TE
mode. This observation is consistent with our earlier observation thatabovethreshold
the lasing appears as a TE-polarized donut beam, and can furthermore be explained
using mode pro�le calculations [29]. As 3.3(d,e) show, both the TE and TM mode
present a strong �eld near the glass/SU8 boundary where the particles are situated.
However, only the TE mode has a strong electric �eld component in the plane of the
particles, along the main polarizability tensor axes of the plasmon particles. The TM
mode only provides �eld along the sample normal, i.e., along which the silver disks are
not polarizable.

3.6 Band structure and stop gap width

The most notable feature in Fig. 3.3(b,c) that is distinct from the sketched free photon
folded dispersion relation is that the two parabolic bands are not degenerate but
distinctly split. In addition, the linear bands also show a stop gap, with band edges
coincident with the minima of the parabola. Figure 3.4(a-f) shows the progression
of this band structure as we increase particle size. Clearly, the band structure stays
qualitatively identical up to a particle size of 86 nm diameter, however, with a distinct
increase in stop gap width. For particles above 95 nm in diameter, the band structure
develops a qualitatively different appearance, both in terms of avoided crossing
geometry, and in terms of the widths of the various bands.

Before discussing these more subtle features, we plot the stop gap width versus
particle diameter (�gure 3.4g). In this diagram error bars on particle size are taking
as the standard error from many electron microscopy size determinations, while the
error in stop gap width represents a conservative estimate of the error in reading of
the band edges from the CCD images. Evidently the stop gap width systematically
rises with particle diameter (data shown for two distinct sample substrates). Plotted
alongside the data (red curve, rightmost axis) we display the extinction cross section
according to Lumerical at the wavelength of the band anticrossing. We conclude that
there is a strong correlation between the calculated cross section and the measured stop
gap width.

Such a relation between stop gap width and a scattering parameter such as cross
section is not unexpected, in the sense that it has been well known since the late 1990's
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Figure 3.4: Measured! ¡ k diagrams as function of plasmon particle diameter, where
the diameter varies from 53 (a), 61 (b), 74 (c), 82 (d), 86 (e) to95§ 5 (f) nm, for
samples with pitchd Æ460 nm, using the Rh6G:Rh700 dye mixture, taken below
threshold. Maxima are 5350 (a), 8600 (b), 11650 (c), 14300 (d), 25200 (e), and 27950
(f) counts/¹ J/shot, respectively. Panel g represents measured relative gapsize versus
particle diameter (blue and red points, referring to two separate data sets). The line
indicates the extinction cross section per particle (right-handy-axis) calculated with
Lumerical, evaluated at the lasing wavelength.
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3.6 Band structure and stop gap width

that in dielectric photonic crystals of spheres the relative stop gap width is given by
[30]

¢!

!
Æ4¼

®

V
(3.2)

where® stands for polarizability (real and positive for dielectric spheres), andV for
the unit cell volume. At �rst sight it stands to reason that a similar relation holds in
2D plasmonic systems. However, we remind the reader that in the plasmonic case
the physics is much richer, since® is a complex quantity, while stop gap widths must
obviously be real and positive. There is no currently available theory that reports the
equivalent of Eq. 3.2 for stop gap width in terms of scattering parameters of plasmon
particles.

In an attempt to bring out the dependence of stop gap width on scattering strength
more clearly, we have constructed a "master diagram" that combines the data obtained
here with the Rh6G-Rh700 FRET pair, and the data obtained earlier with just Rh6G.
For the master diagram we use a normalized frequency detuning parameter, i.e., the
detuning between particle plasmon and lasing wavelength! LSPR¡ ! lasing , normalized
to the bandwidth of the plasmon resonance (FWHM¡ LSPR). Note that this is the only
apparent relevant linewidth to normalize to in our system. The relevant single-particle
frequency and linewidth are obtained by �tting a Lorentzian to the simulated particle
response (speci�cally, to¾scat¸ 4, which should be proportional toj®j2.) The data in
Fig. 3.4 taken with the Rh700 as gain medium, appears at negative detuning, and we
remind the reader that to take it we kept lasing frequency! lasing �xed (�xed pitch),
and particle size tuned the plasmon resonance! lasing from the blue side onto the lasing
condition. For positive detuning, we plot data taken with a �xed particle size of 110
nm, varying pitch from 360 to 400 nm and using Rh6G as gain medium, reported in
Chapter 2. In this second set, the particle size was �xed and the lasing wavelength was
swept over the blue edge of the plasmon resonance by varying pitch.

The resulting stop gap width clearly drops when detuning in either direction away
from zero detuning, however, in an asymmetric fashion. Stop gap widths are about
three times higher for detunings to the blue of the resonance, then for equal detuning to
the red of the resonance. Such an asymmetry could be expected, in the sense that if
even if one starts with a Lorentzian polarizability®(!) , the scattering response of a
plasmon particle is asymmetric in frequency. In particular, suppose we take

®static (!) Æ
V ! 2

0

! 2 ¡ ! 2
0 ¡ i !°

(in CGS units, with! angular frequency,! 0 the particle resonance,° an Ohmic
damping rate, andV an (effective) particle volume) to describe the electrostatic
polarizability of a small particle that is composed of a Drude model [31] To turn
this polarizability into that of a physical scatterer one must include radiation damping
[32]

1

®
Æ

1

®static
¡ i

2

3
k3

65



3 Band structure in plasmonic lattice lasers

(with k Æn!/c ), from which one can then calculate the scattering cross section

¾scatt Æ
8¼

3
k4j®j2

Fig. 3.5 shows data alongside this scattering cross section, plotted taking an archetypical
Ohmic damping for silver (° Æ0.05! 0) and particle volume chosen to obtain a
scattering cross section at 80% of the unitary limit (3/2¼¸ 2), which is on par with
the scattering strength of plasmon particles of suf�cient size (diameter above 50 nm).
The stop gap width correlates well with the scattering cross section (as well as with
the extinction cross section, since for this choice of parameters scattering dominates
extinction) which shows a similar asymmetry. For reference, in blue the cross section
from simulations is reproduced.

Figure 3.5: Stop gap width versus normalized detuning between plasmon resonance
and Bragg diffraction wavelength. Points in red and blue have been taken from Fig. 3.4
(Rh700 sample, large pitch), while the black points at positive detuning are obtained
from Chapter 2. The red line represents the scattering cross section expected in a dipole
model, while in blue the cross section versus diameter from Lumerical calculations is
shown that is also plotted in Fig. 3.4. Note that the cross sections have been scaled. At
its peak, the cross section of the red curve equals 80% of the unitary limit.
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3.7 Band structure topology versus detuning

We now turn to discussing more detailed features of the measured dispersion relations
beyond just the stop gap width. Figure 3.6 shows three measured dispersion diagrams.
Panel a, shows a dispersion diagram taken from Chapter 2, obtained on a sample that
has the lasing condition well to the blue of the localized surface plasmon resonance
(Rh6G sample,d Æ380 nm, 55 nm diameter particle). Panel c shows a dispersion
diagram for the converse case, i.e., with the lasing condition well to the red of the
plasmon resonance (case (e), Fig. 3.4). The panel in the middle, �nally, corresponds to
a case where the lasing condition is aligned to the plasmon resonance (Rh700 sample,
particle diameter 129 nm).

We note the following progression in the data. First, when lasing is well to the
red of the localized surface plasmon resonance, the lower and upper parabola have
their minima coincident with the maximum and minimum of the anticrossing linear
dispersion relations. Lasing in these samples dominantly occurs on the upper band edge.
The fact that the parabola and the anticrossing lines share a common gap is consistent
with the scalar coupled mode theory for dielectric DFB lasers (outlined for plasmon
lasers by van Exter et al. [33, Fig. 4b] in the limit that coupling byG Æ2¼/d(0,§1)
and(§1,0) dominates, and(§1, §1) scattering is weak. For small particles and large
red detunings the upper parabolic band is slightly broader than the lower parabolic
band is narrow. For the opposite-detuning case, i.e., panel (a) in which lasing occurs to
the blue of the particle resonance, again two split parabola, and two anticrossing linear
bands are retrieved, now with the upper parabola consistently very broad. For these
samples lasing occurs on the lower stop gap edge instead of the upper stop gap edge.

Figure 3.6: Generic! ¡ k diagrams for three cases: lasing condition blue-detuned,
red-detuned, and centered on the plasmon resonance (panels a, c and b). These concern
d Æ380,2r Æ55 nm (panel (a)),d Æ460,2r Æ129 nm (b), and (c)d Æ460,2r Æ86 nm.
For panel (a) we used Rh6G only, while the other panels used theRh6G : Rh700 FRET
mixture. White arrows indicate the! ¡ k -point on which the system lases �rst.
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Finally, when the particle plasmon and lasing condition coincide, i.e. panel b in
Figure 3.6 the band structure is markedly different. The minimum of the lower parabola
is pushed below the frequency range of the measurement, and a set of additional
features has appeared that can not be trivially traced to the original four-band crossing
in a coupled-mode/slightly perturbed free-photon picture.

3.8 Theoretical considerations

To summarize these phenomenological observations, we have established the following
facts that any theory must address:

1. Lasing occurs at the 2nd Bragg diffraction order stop gap on the TE waveguide
mode.

2. For detunings of at least half a linewidth away from the plasmon resonance,
whether to the blue or red of the resonance, the dispersion relation is reasonably
described by a perturbed free photon dispersion relation (best correspondence in
the red detuning case).

3. In this regime the stop gap scales with scattering strength, as quanti�ed by an
extinction or scattering cross section.

4. The lasing condition is on the stop gap edge closest to the plasmon particle
resonance, meaning it swaps edge when �ipping the sign of the detuning.

5. When Bragg condition and localized plasmon resonance coincide, the dispersion
relation is far from close to a perturbed free photon dispersion relation.

We note that it is a surprisingly challenging problem to build a theory for this system.
Coupled mode theory [19, 33] would treat the particles as a weak perturbation, and is
essentially valid only for small dielectric perturbations. Hence it will certainly not deal
with the case of plasmon resonance and Bragg condition aligned. Also it is unclear
how to connect mode coupling parameters to single particle scattering strengths. In
principle, the response of 2D lattices of plasmon particles has been succesfully modelled
by point-dipole methods [32], where retarded dipole-dipole interactions are accounted
for using Ewald lattice summation. Extending this method to deal with strati�ed
background media, i.e., the glass/waveguide/air system, is a challenge in itself, but has
been accomplished by several workers [34–36]. This method, however, only provides
the response in terms of transmission, re�ection, and diffraction, to external driving.
If one would want to model lasing, one should include actual gain in the system, as
well as spontaneous emission noise to kickstart the lasing process [37]. Slightly less
ambitious would be to not model the lasing itself, but to model the passive-system band
structure [38]. A dispersion relation by de�nition is the set of frequency-wave vector
points at which the system has a �nite response to in�nitesimal driving. However, here
one should realize that we are working with a system that has radiative and strong
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absorptive loss. In presence of loss, no real-frequency, real-wave vector dispersion
exists [39, 40]. In fact, for the emission experiment, it is a challenge to de�ne how
the observable relates to a generalized dispersion relation in which either frequency or
wave vector is chosen real [41].

The regime that seems most amenable for theoretical interpretation is that of large
detuning. The most unique aspect that appears is that the stop gap edge on which lasing
occurs swaps from being at the red to the blue stop gap edge, when detuning the lasing
condition from the red to the blue of the plasmon resonance. A likely explanation
comes from the �eld of photonic crystals, where it is well known that the modes at
the stop gap edges are standing waves that have their �eld energy density at different
locations in the unit cell. For photonic crystals the band de�ning the lower edge is
generally known as "dielectric band", while the upper band is called "air band" to re�ect
that the associated modes reside primarily in the high, resp. low index layer. Similarly
one can hypothesize that in plasmonic crystals near the band edge one band will reside
at, and one band will reside away from the plasmon particles. The energetic ordering of
these two bands could then be expected to �ip when the sign of the scattering potential,

Figure 3.7: The blue curve in the lower panel shows the extinction cross section for
a single silver disk with a height of 30 nm and a diameter of 100 nm on a substrate
with index n=1.46, embedded in a waveguide with a refractive index of 1.65 and a
thickness of 450 nm. The curves in the upper panel show transmission for an array of
these particles with a pitch of 500 nm (pink) and 370 nm (green). The pink and blue
areas represent the frequencies limited by! Æ2¼cnmat d with nmat =1.65 and 1.46
for both pitches, that would correspond to grazing angle grating coupling into solid
SU8, or the glass. The dotted lines show the frequencies for which the waveguide mode
without particles has a TE and a TM mode, as indicated. The broad dip at! 1 and! 4 is
associated to the lower band edge for a pitch of 500 nm and to the higher band edge for
a pitch of 370. We indicate their complementary band edge by! 2 and! 3, respectively.
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i.e., the polarizability® �ips, which occurs as one goes from negative to positive
detuning. Lasing would then likely occur at the band with the least loss, that resides
away from the particles. In this picture it is also evident that common photonic crystal,
i.e., free-photon dispersion perturbation theory, fails at zero detuning, as it can not deal
with imaginary polarizability.

As example of the merits and dif�culties of interpreting numerical simulations
to understand the band structure physics, we consider a COMSOL 3D �nite element
simulation. In this simulation we assume as structure a square lattice of silver particles
in a glass/waveguide/air system. As indices we take 1.46/1.65/1.0 - although the
actual glass we use is not quartz but fused silica (n=1.52), and the SU8 index from
ellipsometry is actually 1.60, not the datasheet value of 1.65. The reason for this
choice is that it provides much easier interpretation of diffraction calculations, in that
it provides a larger separation between the waveguide mode indices, and the glass
index. We found that otherwise it is dif�cult to separate diffractive coupling into
glass, resp. into the waveguide. As particles we assume silver disks of height 30
nm and diameter 100 nm, using the modi�ed Drude model discussed in Chapter 2,
Eq. (2.1). We have performed calculations on three systems. First, we have calculated
the scattering and extinction cross section under normal incidence illumination as
function of frequency for a single particle, using a total �eld/scattered �eld simulation
with scattering boundary conditions. We �nd a strong resonance at! Æ2.76¢1015 s¡ 1,
i.e., about 680 nm. Next, we implemented Bloch-Floquet boundary conditions to obtain
the diffractive properties of periodic systems driven by a plane wave incident from
the glass side. In this simulation we simulate approximately two wavelengths deep
into the air and glass, now using so called periodic port boundary conditions for all the
propagating diffracted orders. It should be noted that these simulations need about 10
minutes per frequency point. We have studied two pitches, i.e. 500 nm and 370 nm, to
obtain diffractive coupling to the waveguide, i.e., to hit the 2nd order Bragg condition,
on either side of the resonance. Figure 3.7 shows the transmission in a small frequency
range around the diffractive coupling condition for both pitches. The curves present
the following three features. First, the generally high transmission is dominated by a
relative broad (though still narrow compared to the plasmon resonance) asymmetric
minimum that has the appearance of a Fano lineshape. Second, the spectra show two
extremely narrow features. The frequency at which the two narrow features occur
match very well with diffractive coupling to the TE and TM waveguide mode, i.e., to
¸ 0 ÆnWGd with nWG the TE and the TM waveguide mode index from a waveguide
mode solver (1.588 resp 1.575 and 1.5561 resp 1.53 for the TE resp. TM mode for
the casesd Æ370 nm, respd Æ500 nm). This analysis, of transmission in itself
already highlights an interesting dif�culty. The spectra plotted in �gure 3.7 have been
calculated assuming slightly off-normal incidence (angle of0.5± in air). At exactly
normal incidence the narrow TE feature exactly vanishes, evidently not because the
mode vanishes but because coupling to it is forbidden by symmetry. It is a general
problem of any analysis tool like COMSOL that it is dif�cult to obtain "eigenmodes"
without reference to a driving �eld.
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Our interpretation of the result is the following. The lasing features we observe
are, according to our experiment, due to the TE mode. Hence the TM feature is of
no relevance, but the other two features in the spectrum apparently indicate the lower,
and upper stop gap edge for the TE dispersion relation that we measured. In this
interpretation, which we validate below, it is relevant to note that for the large-pitch
cased Æ500 nm, the broad minimum occurs at lowest frequency (2.34¢1015 s¡ 1), while
the narrow TE feature occurs at a frequency that is about 3% higher (2.42¢1015 s¡ 1).
For the small-pitch case, where the Bragg condition is to the blue of the plasmon
resonance, the ordering is reversed. The tentative interpretation is that lasing always
occurs on the narrower band of the two, and that in both cases the narrow band has its
corresponding mode pro�le away from the particle (away from Ohmic loss), while the
broad band edge has its corresponding Bloch mode at the particles. This claim then
implies that as one goes through the polarizability resonance the energetic ordering of
the mode swaps.

To verify the assertion regarding the nature of the narrow and broad mode, one
would want to examine eigenmode �eld pro�les. However, these are not accessible as
we examine a driven system. Instead, we need to plot either a vector component of the
full �eld we calculated at the resonance frequencies, or to consider scattered �eld. We
found examining scattered �elds (i.e., full �eld, minus the �eld that we calculate in
absence of the particle) brings out the physics best, as one is not distracted by the trivial
standing wave patterns in thin �lm interference that the incident �eld itself contains.
However, we warn the reader that scattered �elds by themselves arenot solutions of the
Maxwell equations. Only for cases where a strong resonance is excited, is a scattered
�eld approximately an eigenmode solution.

Figure 3.8: Crosscuts in the xy plane and xz plane through a particle which is in a
particle array. Shown are the �eld plots for frequencies at the lower and upper band
edge, for a pitch of 370 nm and 500 nm. Plotted isEy ¡ Ey,in . The incident �eld
strength is 1 V/m. These frequencies are obtained from the plot in 3.7, where they are
denoted as! 1 Æ2.35¢1015 s¡ 1 (upper left plots),! 2 Æ2.42¢1015 s¡1 (lower left plots),
! 3 Æ3.21¢1015 s¡1 (upper right plots) and! 4 Æ3.27¢1015 s¡1 (lower right plots).
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Figure 3.8 shows �eld pro�les in thexy-plane through the particle, as well as
verticalxz andyz cuts through the system, for both pitches and for both the sharp and
narrow TE feature. We plot the �eld componentEy along the incident polarization. The
resulting diagrams con�rm the hypothesis about the �eld distribution that we posed.
First, the vertical cuts show the typical mode pro�le of a TE mode in the transverse
direction, indicating that our mode assignment was correct. This is not surprising for
the narrow feature that exactly coincides with¸ 0 ÆnTEd , but it validates that the broad
minimum in transmission is the other TE-mode stop gap edge. At the frequency of the
narrow feature, the scattered �eld has a nodal plane at the particle, and resides mainly
away from it. Conversely, at the broad minimum in transmission, the associated �eld
plot shows strong excitation of the particle.

To conclude, in our measurement we have observed that lasing occurs on the blue
stop gap edge when the lasing condition is on the red �ank of the particle resonance,
and vice versa lasing occurs on the red stop gap edge when the Bragg condition is
to the blue of the particle resonance. The COMSOL simulation corroborates the
interpretation that lasing simply selects the stop gap edge that corresponds to the Bloch
mode that forms a standing wave with energy density away from the particle. As one
goes through resonance, the stop gap edge to which this standing wave corresponds is
reversed. This stands to reasons when one realizes that going through resonance, the
real part of the polarizability �ips sign. We note that an interesting follow up study
would be to analyze also coincidence of the Bragg condition with the polarizability
resonance. Likely this would require mapping not just frequency, but also incident
angle, to disentangle the various effects, especially as the TE and TM mode structure
could mix, and as the splitting could get so large that the polarizability can no longer
be seen as approximately constant over the bandwidth of the gap.

3.9 Conclusions & outlook

In summary, we have shown how the optical response of plasmonic scatterers affects the
band diagram of a system of plasmonic scatterers embedded in a dye doped waveguide
layer. We have used a FRET pair to be able to excite our gain medium at 532 nm while
obtaining emission around 700 nm. We have shown that the process facilitating this
is FRET by measuring lifetime curves as a function of dye concentrations. We have
performed polarization selective measurements regarding the band diagrams and found
that emission is mainly TE polarized. In addition we have measured band diagrams as
a function of particle size and found a strong dependence of stop gap size on particle
diameter. Finally, we support our measurements using comsol simulations. Our work
gives a clear agenda for theoretical efforts. These must at least account for the scaling of
stop gap with scattering strength for large detunings, for the qualitatively very different
band structure at zero detuning, and for more subtle features such as where the mode
resides and what mode has least loss, depending on the choice of detuning. Experiments
that could guide these theoretical efforts would for instance include studying variations
in particle material, to independently vary loss and scattering.
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4
Statistics of randomized plasmonic lattice lasers

We study lasing in randomized lattices of silver particles in a dye doped
waveguide. We set out to answer a basic question, triggered by earlier
observations of distributed feedback lasing in 2D periodic plasmonic
particle lattices: how much order do you need to obtain lasing? We
start from a diffractive 2D square lattice of silver nanoparticles with
a pitch that satis�es the 2nd order Bragg diffraction condition at the
emission wavelength of the dye. By randomly removing particles, and
by displacing particles we increase disorder. We observe that lasing at
the 2nd order Bragg diffraction condition is very robust, with lasing even
persisting when 99% of particles is removed. Above a certain amount
of disorder new features appear in the spectrum as well as in the fourier
image that are due to random lasing. We classify fourier space output on
the basis of structure factor calculations. In addition we apply speckle
intensity statistics analysis to real space �uorescence images and introduce
a new method to differentiate between spontaneous emission and lasing
emission.

4.1 Introduction

In plasmonics the interaction between light and free electrons in metal is used to
obtain highly localized electromagnetic �elds [1]. Over the past years plasmonics has
received widespread interest because of the potential to con�ne light in sub-diffraction
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limited volumes for nanoscopy [2], and optical information processing [3], and to create
huge near �eld enhancement for light-matter interaction [4]. Plasmonic particles not
only carry strong near �elds, but also scatter light much more strongly than dielectric
particles of equal size. Plasmonic particles have been used as nanoscale antennas that
provide up to thousand-fold �uorophore emission rate enhancement [5–7], emission
directivity [8, 9], and opportunities for surface-enhanced Raman and surface-enhanced
infrared spectroscopy [10]. The properties of individual plasmon particles may be
enhanced by placing particles in periodic arrays [11], with demonstrated uses in e.g.
solar cells and light emitting diodes [12, 13]. In view of the strong �eld enhancement
effects, the interplay of gain with plasmon particles to form lasing systems is of large
interest.

There are three different ways of using gain in a plasmonic system. First, propa-
gating surface plasmons may be coupled to a gain medium so that loss compensation
may be achieved [14]. Second, stimulated emission may trigger lasing into the
surface plasmon or plasmon polariton mode of a single nanoparticle when suf�cient
feedback is provided by a plasmonic resonator [15, 16]. This is known as SPASER
(Surface Plasmon Ampli�cation by stimulated Emission of Radiation) [17]. Third,
by embedding plasmonic particle clusters in a gain medium, near �eld enhancement
and multiple scattering can combine to give distributed feedback lasing [18]. Several
groups [19–21] showed that periodic lattices of plasmonic scatterers can yield lasing at
frequencies determined by the pitch of the array through second order Bragg diffraction,
as is also the case in dielectric distributed feedback lasers. Dielectric DFB lasers,
whether as semiconductor laser, or as organic DFB laser, are widely applied devices
that provide large area, and low-threshold lasing using a low index-contrast periodic
grating for feedback by Bragg diffraction, that is embedded in a medium that is at the
same time the gain medium and a planar waveguide [22]. In a typical DFB laser, the
index contrast is small, so that the waveguide dispersion is folded due to the introduced
periodicity, but is otherwise hardly changed in the sense that stop gaps are narrow in
spectral bandwidth. Associated to the absence of wide stop gaps is the need for DFB
lasers to span large areas to build up feedback. In contrast, in the recently reported
plasmon systems a characteristic large stop gap occurs in the hybridized dispersion of
waveguide and plasmon lattice, as we discussed in Chapters 2 and 3. This results from
the much larger scattering strength of metal particles. Given the unique properties of
plasmonic particles in terms of their huge scattering strength compared to dielectric
DFB constituents, a question that naturally arises is how robust plasmonic particle
array lasers are to disorder. In between the extremes of a nominally perfectly periodic
laser and a completely random laser, this question encompasses a large spectrum of
"correlated disorder" cases [23–25], in which particles are for instance progressively
shuf�ed compared to ideal positions in a lattice, or where random con�gurations are
made by randomly removing scatterers from a perfect lattice. In this Chapter �rst we
treat the problem from the viewpoint of DFB lasers, in particular unravelling how much
disorder a plasmon DFB laser can suffer, and how disorder affects �gures of merit like
threshold, outcoupling, and angular pro�le. In the second part of the Chapter we rather
view the system from the viewpoint of disorder lasers, in particular applying speckle
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statistics analysis. We demonstrate that a plasmonic DFB laser is a useful platform to
explore lasing in correlated disorder systems.

4.2 Lasing in disordered samples

Figure 4.1: SEM images of randomized particle arrays (a-f) and a schematic of the
setup (g). The top row (a-d) shows particle arrays in which particles have been randomly
removed to leave �ll factors of 100%, 50%, 20% and 5%. Panels (e-f) are for �ll factor
50% and 100%, with particles randomly placed in a box of 100 nm centered on each
perfect-lattice site. Scale bars in all SEM images are 3¹ m. The setup diagram (g)
highlights that we use a high NA �uorescence microscope with 532 nm pulsed pump
laser (0.5 ns), and single shot collection of spectra, or alternatively CCD images in a
real-space, or Fourier-space imaging plane.

We fabricate silver particle arrays on glass using the electron beam lithography
procedure reported in Chapter 2. The particles are 30 nm high silver particles of radius
about 50 nm arranged (in case of a sample without intentional disorder) in a square
lattice with an interparticle separation of 380 nm. Subsequently the array is embedded
in a SU8 layer (refractive index about 1.65) of 450 nm thick that simultaneously acts
as single mode TE waveguide and as gain medium, through incorporation of 0.25 wt%
Rhodamine 6G. We start with a perfect periodic lattice which we randomize using
two methods. First, we knock out particles randomly from the periodic lattice. The
randomness is increased by decreasing the probability to leave a particle in the lattice,
where probabilities for each site are drawn independently. For our samples we use
a probabilityP of 100% (periodic lattice), 50%, 20%, 10%, 5%, 2% and 1%. As a
second randomization method, we displace each particle by choosing for each a random
position in a box of sizel centered at their initial lattice position. We choosel to be
0 nm, 20 nm, 40 nm, 60 nm, 80 nm and 100 nm. Finally, we use combinations of all
values ofP andl. While for each lattice site the probability to keep a particle is drawn
independently, we note that strong spatial correlations remain, based on the fact that
particles remain situated on (or near, forlÈ 0) the ideal lattice sites. A select subset
of disordered particle arrays is shown in �gure 5.1a-f that highlights the progression
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from perfect to strongly diluted samples, as well as the effect of particle shuf�ing.
In discussing our optical measurement data throughout this Chapter we will limit
ourselves to presenting complete data for a select set of samples that highlight the
salient features. These are the samples with varying �ll factor (presentingPÆ100,50,5
and1%) at zero shuf�e (l=0), and conversely maximum random particle displacement
(l=100 nm) at a �xed �ll factor of P=50%.

We use the inverted �uorescence microscope explained in Chapter 2, in which
the sample is excited through a high NA objective using a pulsed 532 nm laser. A
schematic of the setup is shown in �gure 5.1g. The schematic shows the green pump
laser, and the excitation and collection paths wich use the same objective. In particular
we perform real space and Fourier microscopy in an NA=1.45 (Objective Nikon Plan
Apo ¸ 100£ ) �uorescence microscope, where sample excitation is realized from the
glass side using 0.5 ns pulses in the range of 0–250 nJ (0—10 mJ/cm2). Figure 4.2(a)
shows lasing spectra for a selection of samples with progressively increasing degrees
of disorder, starting from the perfect lattice (P=100%, l=0) in Fig. 4.2a that lases at 590
nm, as expected from its second order Bragg condition for the waveguide mode, set by
¸ Ænwaveguided , with d Æ380 nm the pitch, andnwaveguide¼1.55 the waveguide mode
index. The mode index ofn Æ1.55 matches calculations and can be directly read off
from Fourier images (see below). As in Chapter 2, the threshold is at around 1 mJ/cm2.
When diluting the lattice, from 100% to 50% and even down to �ll factorP Æ5%
the lasing condition clearly remains, and in fact the threshold remains approximately
constant as compared to the perfect lattice (input-output curves in Fig. 4.2(b)). In
absolute terms, the lattices with particles removed actually offermoreoutput emission
at a given pump power, both for the spontaneous emission background and the lasing
peak. This indicates that disorder by moderate removal of particles aids outcoupling,
but does not hamper feedback. When �xing the �ll factor to P=50% and shuf�ing the
remaining particles by as much as 100 nm, i.e., over 25% of the pitch, lasing remains
robust in the sense that a single sharp lasing peak occurs at the second order Bragg
condition of the original perfect lattice, albeit that in this case the threshold is about �ve
times higher. Finally, it is particularly surprising that even at a �ll factor of 1%, when
as many as 99% of the particles have been removed from the lattice, lasing persists at
the Bragg condition of the perfect lattice.

The fact that the primary lasing condition remains at the second order Bragg
condition does not imply that the lasing characteristics remain unaffected by the
disorder. In particular, we observe several distinct phenomena. First, as regards the
lasing peak one could expect changes in center wavelength or width. For shuf�ing of
particles we �nd hardly any variation in lasing peak wavelength, while upon dilution of
the lattices, the peak laser wavelength varies by around 2 nm. The width of the lasing
peak, as determined from the �rst spectrum above threshold, is at the spectrometer
resolution for all cases. Second, the lasing threshold (plotted in Figure 4.3 gradually
increases by up to a factor of 3 as we increase the random displacementl from 0
to 100 nm, at �xed lattice �ll factor of 50%. In Figure 4.3 we plot thresholds for
several independent experiment runs on different samples with nominally identical
parameters, where in each run we normalized thresholds to that of the sample with
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4.2 Lasing in disordered samples

Figure 4.2: (a) Spectra for a nominally perfect sample (100% �ll factor, blue curve),
50% diluted sample (red), a 50% diluted sample with 100 nm shuf�e (orange), and a
sample with 95%, and 99% of particles removed (purple and green, resp.). Spectra are
averaged over three shots, and plotted on a log scale. All spectra are taken at 25 nJ
pump energy, except for the two cases with a much higher threshold (50% with 100 nm
shuf�e, and 99% removal, spectra at 240 nJ). For the case where 99% of the particles
was removed, the signal is furthermore multiplied by 5 to be visible on the same scale.
In (b) we plot output (lasing plus spontaneous emission) in a 5 nm band around the
2nd order Bragg condition as function of input power, as controlled by the AOM where
the x-axis represents percentage of maximum excitation power of 250 nJ. Only for the
very dilute sample (99%) and the sample with large shuf�e do we �nd a much larger
threshold than for the other cases. Note that the perfect sample has a smaller slope
above threshold, indicating poorer outcoupling.

50% �ll factor and no shuf�e (arbitrarily chosen as our reference sample). This
normalization procedure reduces variations between samples that are due to difference
in polymer thickness or doping that might occur between different sample fabrication
runs. That the thresholds are immune to displacement of particles up to between
20 and 40 nm is common among all samples, as is the fact that the threshold rises
for higher displacement. For the case of decreasing �ll factorP (at no shuf�e), the
threshold behavior is less intuitive. Thresholds for the lattices with �ll factor 100%
down to 20% are all comparable. We attribute this remarkable result to the fact that the
particles on one hand are required to provide feedback by scattering, yet on the other
hand constitute a loss channel through absorption. Since the particles are very strongly
scattering compared to those that suf�ce to achieve lasing in DFB lasers, it is reasonable
that removing 50% to 80% of them leaves suf�cient feedback by scattering, and in
fact may even reduce threshold by reducing absorption. We �nd a marked increase
in threshold only for �ll factors below 20%, from which point on we �nd not only an
increase, but also a wide spread in threshold. We attribute the much increased spread
in lasing thresholds observed for very low �ll factors to a third change in the lasing
behavior that is evident from examining the spectra. The spectra themselves at very low
�ll factor show the appearance of extra emission peaks distinct from the¸ Æ590 nm
Bragg condition at markedly blue-shifted wavelengths that are much closer to the main
emission band of Rh6G (Fig. 4.2(a), green spectrum). We hypothesize that at large �ll
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factors, above 20%, the randomized lasers essentially remain DFB lasers that function
near the original diffraction condition, but with thresholds that increase with increasing
particle shuf�e. At very low �ll factors qualitatively different behavior emerges, where
2D DFB lasing competes with behavior reminiscent of random lasing [26, 27].

Figure 4.3: Threshold values normalized to the threshold for �ll fraction 50% and
shuf�e 0 nm as a function of shuf�e (a) and �ll fraction (b). We report three data
sets (black, blue red for the three series), taken on different sample substrates. Due to
differences in SU8 preparation, absolute thresholds between runs are not comparable,
the threshold differences show the same trends from run to run. For increasing shuf�e,
the lasing threshold steadily rises by at least a factor three. For decreasing �ll fraction,
we �rst see no threshold variation, or even a threshold reduction, until very low �ll
factorsÇ 20%are reached. The spread in threshold is remarkably large for low densities.

To rationalize the fact that lasing persists even at very large levels of disorder,
especially in terms of lattice dilution, we consider the structure factors of the various
(dis)ordered lattices. The structure factor is de�ned as the Fourier transform of the
lattice of particle center coordinates. Figure 4.4 shows structure factors for the perfect,
periodic, lattice as well as a 50% diluted lattice, a 50% diluted lattice with maximum
shuf�e (100 nm), and a lattice of �ll factor 5%. Evidently, when diluting the lattice
by 50%, even at maximum particle displacement the structure factor still shows clear
Fourier peaks at the ideal-lattice reciprocal lattice vectors. At maximum shuf�e, the
Fourier peaks reduce moderately in intensity, and a background appears of speckle that
is especially evident at largerk . In contrast, at very low �ll factor the Fourier peaks
are only just evident above the speckled background that is typical for a completely
random system. To conclude, by `merely' reducing the lattice �ll factor to 50% or 20%,
very strong spatial correlations remain, explaining why the original 2nd order Bragg
condition is clearly available for lasing. Likewise, randomizing particle locations by
l =100 nm does not strongly reduce the spatial correlations. Only in case of strongly
reducing the lattice �ll factor, do spatial correlations become faint. Besides an analysis
of the structure factor, that only accounts for the particle ordering, lasing naturally
also depends on the gain length, and particle scattering strength. The gain length of
the Rh6G (3¢10¡20 m2 cross section) doped waveguide layer is estimated as¼4¹ m,
or 10 unit cell spacings, at the maximum pump intensity. Lasing is thus aided by the
fact that the 2D planar waveguide geometry strongly favors ampli�cation of in-plane
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scattered light, with a short gain length comparable to the interparticle distance. As
regards scattering strength, in Chapter 2, it was established for the `perfect' periodic
lattice (no intentional disorder) that the Ag particles are suf�ciently strongly scattering
to open a clear, 3% wide stop gap at the second order Bragg condition. This is a key
number, since the inverse of the relative stop gap width is a direct measure for the Bragg
length, i.e., the number of unit cells required for Bragg re�ection [28]. In dielectric
DFB structures lasing is achieved under conditions where the scattering strength
per unit cell is very small, meaning that not just 30 lattice spacings (or scatterers)
provide suf�cient feedback for lasing, but of order 103 are needed [29]. Indeed, as
we reported in Chapter 2 the exact same lasing geometry but with Ag replaced by the
highest index possible for a dielectric (TiO2), we could not even obtain lasing given
the pump area of about 150 lattice spacings across. With particles twice bigger in
volume, we barely obtained suf�cient feedback for lasing. This rationalizes that for the
plasmonic particles, even at a strong reduction of the scattering strength per unit cell
there is suf�cient distributed feedback for lasing, whether that reduction is obtained
by shrinking particles, or removing them altogether. An interesting question is if upon
diluting the lattice, scattering measurements in absence of gain can be used to resolve
the width of the bands, and the width of the stop gap. In practice, however, we note
that such experiments are hardly feasible. Figure 4.5, further discussed below, shows
that the passive-system features that are due to Bagg diffraction vanish in amplitude
upon dilution, even though upon ampli�cation they stand out. Given the particle cross
section of about 0.07¹ m2, expected transmission features have only a few percent
amplitude at dilutions to 20% or less. We note that afull theory of lasing in these
systems is beyond the scope of this thesis. In fact, even for the perfect periodic case,
there is currently no theory that covers simultaneously the plasmonic lattice dispersion,
gain, and the emergence of lasing from noise [30].

4.3 Fourier space analysis

The structure factor analysis directly motivates a study of Fourier images to further
understand the distinct lasing characteristics at various types of disorder. Fourier
images, or "back focal plane" images for the perfectly ordered case (P=100% andl=0)
were discussed in depth in Chapter 2. In brief, they present the following appearance
(�gure 4.5a) for below-threshold emission. They appear as bright disks on the CCD
where the center corresponds to the optical axis, and the distance from the center
outwards is proportional tojk jj j/k 0 Æn sin µ (µ the emission angle into glass). Thus
the outer edge of the disk corresponds to the NA of the objective, which is equal to
1.45. The inner circle corresponds to an NA of 1 (i.e.k jj j Æ!/c ). It is due to the
fact that below threshold most emission exits the dye layer at an angle just above
the critical angle for the air/glass interface, i.e., at an NA greater than 1, which is a
well known property of the emission pattern of dipole emitters held just above a glass
interface [31]. In addition to these sharp concentric circles, eight broad, diffuse, circles
appear that are not centered at the origin, but rather are centered at the reciprocal lattice
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Figure 4.4: Fourier transform of a lattice with �ll fraction 100% and shuf�e 0 (a), �ll
fraction 50% and shuf�e 0 nm (b), �ll fraction 50% and shuf�e 100 nm (c), and �ll
fraction 5% and shuf�e 0 nm (d). The color scale is normalized to the FT maximum.

vectorsk jj Æ2¼/d(m ,n) (with d the particle pitch andm,n integer) and have radius
k0 £ nwaveguide. Herenwaveguideis the effective refractive index of the waveguide mode,
inbetween the index of glass and the refractive index of the SU8 layer (nSU8 Æ1.65).
Thus the waveguide mode indexnwaveguide¼1.55 can be directly read off from the
radius of curvature of the observed bands. In solid-state physics terms, these images
represent repeated-zone-scheme iso-frequency surfaces of the nearly-free waveguide
dispersion relation, blurred by the spectral bandwidth of the dye. Note that these circles
appear to touch atk jj Æ0 indicating that the pitch is such that the second order Bragg
condition is met for waveguide modes at wavelengths close to the emission band of
Rh6G. The below-threshold Bragg diffracted waveguide modes, i.e., the circles, are
broad because the fourier images are panchromatic, and different wavelengths yield
cirlces centered at somewhat different origins. Strictly, the circles touch in the center
for just one emission wavelength, which is equal to the lasing wavelength (590 nm, see
Fig.4.2a). When the system reaches the lasing threshold, a central lasing spot emerges
at k jj Æ0 (center of the image), as can be seen in all fourier images in Fig. 4.5).

Figure 4.5 shows back focal plane images for disordered samples at pump powers
just a few percent above lasing threshold, so that besides the emission atk jj from the
lasing mode, the wave vector structure for spontaneous emission can still be made
out, as can be seen from the circles in Figure 4.5a. Figure 4.5 b, c and d show fourier
images for samples in which we reduced the �ll factor of the lattice to 20%, 5% and 1%,
respectively. Going from 100% to 20% �ll factor, two facts stand out. First, the back
aperture is now �lled with distinct speckle. The emergence of speckle directly points at
the spatial and temporal coherence of the lasing mode. We attribute the emergence of
speckle to the fact that lasing that in the 100% case only couples out as ak jj Æ0 beam,
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Figure 4.5: Back focal plane images taken at a pump power just a few percent above
threshold for plasmon lattice lasers that are randomized by diluting from 100% to 20%,
5% and 1% �ll factor (a-d), and by shuf�ing ((e-h), �xed 50% �ll factor) by 0, 40,
60 and 100 nm. The color axes in all cases are chosen to obtain a dynamic range of
around 5 spanningmean£ [0.35 1.8] around themeanimage intensity. Speci�cally, for
the background subtracted images, the ranges are [min,max]=[154,700], [199,1050,],
[212,1144], [264,1503] for (a-d) and [174,946], [204,1095], [282,1525], [402,2257]
for (e-h), where numbers correspond to background-subtracted CCD counts (about 3
photoelectrons per count) in single shot images. The horizontal and vertical axes are in
units ofk0 Æ!/c , i.e., in units of numerical aperture. In all cases the lasing output is
visible as an intense spike atk jj Æ0, as well as to varying degrees as speckle.
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can randomly scatter at the introduced disorder, thereby distributing intensity over the
back aperture. The second remarkable observation is that, compared to the ordered
sample, the repeated circles are only faintly observable. At even lower �ll factor the
repeated circles completely disappear. This stands in good agreement with the fact that
for randomly removing particles, the reciprocal lattice of the lattice in the structure
factor rapidly looses contrast. For the strongest dilution the speckle itself reduces in
visbility, owing to the fact that the associated increase in threshold causes an increase
in broad background emission as consequence of the increased pump intensity.

Fourier images at a �xed, high �ll factor of 50%, but increasing degree of disorder
introduced by shuf�ing present a very different evolution of Fourier images. Figure
4.5(e-h) shows fourier images for pump energies just above the lasing threshold for a
50% �ll factor at l=0, l=40, l=60, andl=100. At all degrees of shuf�e, even as large
as 100 nm, the repeated-zone-scheme dispersion relation remains clearly evident as
repeated circles. In most instances we in fact see two sets of repeated-zone scheme
dispersion. Our interpretation is the following. The "inner" set of circles, which is
narrow in width and speckled and that touches atk jj Æ0 corresponds to lasing emission.
The fact that scattering of the laser light does not lead to a homogeneous distribution
of speckle over the back aperture as in the case of strongly diluted lattices shows that
the high �ll-factor lattices with displaced particles are disordered yet still strongly
correlated. The width of the circles re�ects the spectrally narrow lasing line, while
the speckled nature shows spatial coherence of the lasing mode. The "outer" set of
circles is broader and diffuse. They correspond to incoherent Rh6G emission at shorter
wavelength, i.e., at the Rh6G spontaneous emission maximum. These circles become
more apparent at higher disorder, as consequence of the much higher threshold pump
intensity at which the image needs to be acquired. The experimental observation that
whereas the dilute lattices hardly show evidence for the underlying repeated zone
scheme dispersion relation, the dense lattices clearly do is easily understood from
considering the structure factor of the underlying lattice (Figure 4.4), in which the
reciprocal lattice still clearly stands out.

4.4 Real space speckle statistics

So far we have examined the lasers as perturbed versions of the ideal, periodic,
plasmonic DFB laser, asking how performance `suffers' upon introducing disorder.
From a very different perspective, our plasmonic lasing platform is of a very large
current interest in another �eld of resarch, i.e., lasing in random systems, and in systems
with correlated disorder [23–25]. In that �eld, rather than studying Fourier images
for residual diffraction conditions, one rather focuses on the statistical properties of
speckle. Above lasing threshold, one expects the emitted light to be spatially coherent
across an extended area of the structure. Interference between coherent scattered waves
in a random medium will generate a grainy pattern that is known as speckle [32] for
which the random scattering community has developed quantitative analysis tools.
These analysis tools map intensity distributions, as well as spatial/angular correlations.
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Figure 4.6: Real space �uorescence images below (a) and above (b) threshold for an
array with �ll factor 50% and no particle shuf�ing. The pump powers are at about 20
resp 250 nJ for panels (a) and (b), and the color scales span to 180 resp. 10000 counts.
Panels (c,d) show the respective autocorrelations, using a colorscale that is linear in
jlog10G(u ,v) ¡ 1j, covering the range forG(u ,v) from [1.003,1.012] in (c) and [1.001,
1.36] in (d). The intensity statistics for below threshold data is Poissonian (black dots,
distribution with no adjustable parameter), while the above-threshold speckle shows
a much longer tail (red dots). Overplotted is the expected statistics for the sum of
incoherent Poisson distributed emission (contributing® Æ60% of the intensity and
speckle with pure Rayleigh statistics.). The intensity statistics is plotted as function of
I /hI i using as vertical scale the log of the number of occurrences. The statistics usesP

N Æ6.1¢104 image pixels.
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In the context of random lasers, for instance, intensity statistics of speckle has been
studied as function of pumping strength [26, 27]. While for perfectly uncorrelated
disorder, speckle statistics follows robust laws, deviations from these laws are of even
larger interest, as they can for instance point at localisation effects, are sensitive probes
of otherwise poorly quanti�able scattering correlations, and can be used to quantify
rare, but dramatic events in correlated disorder systems [33].

Example real space images below and above threshold for the laser with �ll factor
P=50% and no further shuf�ingl=0 nm, are shown in �gure 4.6a and b. Below threshold,
the emission is essentially constant over the �eld of view (about 20 microns across,
set by the pump spot size) with a small pixel-to-pixel variation that is consistent with
Poisson noise. This behavior is commensurate with expected behavior for �uorescence.
That the particle lattice, which in principle is resolvable with white light illumination,
does not stand out is likely due to the fact that the waveguide height (400 nm) far
exceeds the particle height, meaning that most �uorophores do not enjoy a strong
local �eld enhancement. Above threshold the real space �uorescence image is entirely
different, with signal variations from position to position comparable in magnitude to
the mean intensity itself, as expected for a speckle pattern.

To investigate spatial correlations we show the normalized autocorrelation in �gure
4.6c and d. The normalized autocorrelation is given by

G(u ,v) Æ

Î
I (x, y) ¢I (x ¡ u , y ¡ v)dxd y

(
Î

I (x, y)dxd y )2
(4.1)

In this de�nition complete uncorrelated images yieldG(u ,v) Æ1, whereas any spatial
correlation will result inG(u ,v) 6Æ1.

Below threshold, the real space images yield a normalized autocorrelation that is
�at, and 1, except for a single-pixel wide peak at (0,0). For a �uorescence emission
image where each pixel follows an independently drawn Poisson statistics, one indeed
expectsG Æ1, except at(u ,v) Æ(0,0) where a small excess correlation is expected for
Poisson noise, ofG(0) Æ1Å 1

hI i with hI i the mean intensity. Thus, the autocorrelation of
our below-threshold data is in excellent accord with uncorrelated �uorescence emission
from a homogeneous dye �lm. Above threshold two features change. First, the
autocorrelation shows a much higher maximum value of around 1.36 at(u ,v) Æ(0,0),
well above1Å 1

hI i . Second, also away from(u ,v) Æ(0,0) there is a clear correlation,
with distinct circles appearing around the central peak. For a speckle pattern that results
from uncorrelated disorder through superposition of plane waves of random phase and
amplitude, one expects the autocorrelation to exhibit a sinc-type oscillatory behavior
with a typical width at half maximum equal to the diffraction limit and a maximum
of 2, at least for purely random, but fully coherent, speckle [32, 34]. Our data is in
good qualitative agreement with this expectation, barring two features. First, we note
that the square nature of the underlying lattice is faintly visible in the autocorrelation,
directly indicating the correlated nature of the disorder [35]. Second, the autocorrelation
contrast of2 is not reached. We attribute this to the fact that above threshold, images are
a summation of incoherent and uncorrelated spontaneous emission that is broadband,
plus the speckle pattern resulting from the spectrally narrowband lasing mode (see
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Fig. 4.2). Indeed, with increasing pump power above threshold we �nd increasing
autocorrelation contrast (see below). Clearly, the crossing of the laser threshold is
dramatically present in the real space autocorrelation images as a transition from
completely uncorrelated to showing a distinct spatial autocorrelation commensurate
with a speckle pattern.

Figure 4.7: Plot of gmax , i.e., the maximum value of the real-space autocorrelation,
versus®, i.e., the ratio of the incoherent Poisson distributed emission to the total system
output, as �tted from the slope of the tail of the intensity statistics. This plots assembles
pump-power dependent traces for all values ofP andl , where different �ll fractions are
indicated by the color coding (no coding used for shuf�e). The black curve represents
the expected universal behavior in equation (4.4). For each sample, as a function of
pump power the curve starts near(gmax ,®) Æ(1.05,0.95)and® Æ0.95 for lowest pump
power, approaching(1.0,1.0) as pump power is increased, until threshold is exceeded.
From that point on, the data points rapidly trace upwards ingmax along the parabola.

Beyond the spatial autocorrelation function, a second tool to analyze speckle is
intensity statistics [26, 27, 32, 34]. When speckle is generated as a sum of waves
with independently varying amplitudes and randomly distributed phases (uniformly
distributed over 2¼), the intensity is expected to be distributed according to the so-called
Rayleigh distribution [26, 27, 32, 34], given by

PRayleigh(I ;hI i) Æ
1

hI i
e

¡ I
hI i (4.2)

wherehI i represents the mean intensity. Speckle generally satis�es the Rayleigh
distribution, unless it results from strongly correlated scattering events, and assuming
that corrections due to polarization effects can be disregarded. Importantly, the
exponential form of the Rayleigh distribution implies that a histogram ofP(I /hI i)
versusI /hI i on a semilogarithmic scale simply yields a line of slope¡1 , independent of
the sample, provided that the scattering events randomize phase. Below lasing threshold,
we would expect a markedly different intensity statistics, since when �uorophores emit
photons incoherently the intensity will simply follow a Poissonian intensity distribution

PPoisson(I ;hI i) Æ
hI i I

I !
e¡h I i . (4.3)
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4 Statistics of randomized plasmonic lattice lasers

Figure 4.6(e) shows intensity histograms for the below and above threshold image of
4.6(a,b). The below-threshold intensity histogram generated from �gure 4.6a is sharply
peaked around the mean per-pixel count. It is excellently described by the Poisson
distribution, without any adjustable parameter. In stark contrast, the intensity histogram
for the above-threshold dataset of Figure 4.6b is not sharply peaked but shows a long,
linear tail that is indicative of an exponential dependence as expected for Rayleigh
statistics. However, the exponent is not equal to -1. As explanation, we note that
just above threshold one expects the collected emission to be the sum of incoherent
spontaneous emission plus the speckle pattern generated by the lasing mode, with a
ratio between the two that changes as one further exceeds threshold. To benchmark
this assertion, we compare the data to the joint probability distribution for the sum of
an independently drawn Poisson process, and Rayleigh statistics

Pjoint (I ;hI i, ®) Æ
Z I

0
PPoisson(I1;®hI i)P Rayleigh(I ¡ I1; (1¡ ®)hI i)d I 1

¼e¡ I /[hI i(1¡®)] ¢
e®/(1¡®)

2(1¡ ®)

(

erf

" r
®hI i

2

#

¡ erf

" r
®hI i

2
(1 ¡ I /

p
®hI i)

#)

Here the only free parameter is the ratio0 · ® · 1 de�ned as the fraction of signal
contributed by the Poisson background. The approximate expression results from
applying a Gaussian approximation to the Poisson distribution and requires®hI i & 50
counts, and reasonably large argumentI (rule of thumbI È hI i ). It shows that the
large intensity tail is again exponential, but with exponent steepened by a factor(1¡ ®).
Therefore, to compare the joint probability function, we �t to the slope of the high-
intensity tail. Indeed, now we obtain a good match to the data, again containing no
vertical scaling whatsoever. For the example dataset, in Figure 4.6(d), the �t indicates
that ® Æ0.6, meaning that 60% of the total intensity is contributed by incoherent
emission, and 40% by lasing. As the pump power increases from 25 nJ to 250 nJ, the
value of® decreases from 0.96 to 0.6.

To summarize our results from analyzing real space images for a particular random-
ized laser, the above threshold emission shows an autocorrelation commensurate with
that expected for random speckle, with a contrast at(0,0) that rises from 1 (incoherent
background) yet remains well below 2 (expected for just speckle). We attribute this to
the fact that emission is a sum of incoherent (fractional contribution®) and coherent
emission. This same hypothesis also is consistent with the intensity statistics, from
which we �t ®. We now proceed to show that the normalized autocorrelation contrast
at (0,0) and the intensity ratio® are directly related. One can easily derive the expected
autocorrelation for a 2D dataset that is the sum of coherent and incoherent radiation
in terms of the autocorrelations of each constituent. Supposing once again a mean
intensityhI i of which a fraction® is contributed by uncorrelated Poisson distributed
emission, and a fraction1¡ ® from pure speckle (autocorrelation2), one expects

gmax Æ1Å (1¡ ®)2 Å
®

Ç I È
(4.4)
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4.4 Real space speckle statistics

Figure 4.8: Spectrum and real space image above threshold, for a plasmon array laser
with �ll fraction of just 1%, and shuf�e 100 nm. The spectrum clearly shows lasing
at the 2nd order Bragg condition of the perfect lattice, near 590 nm. In addition, the
spectrum shows many random sharp peaks, clustered around a wavelength of 570 nm.
This band coincides with the gain maximum. These peaks do not occur for dense arrays
and are attributed to random lasing (out)competing DFB lasing. The real space image
shows another distinct feature of diluted systems. Instead of exhibiting a uniform
speckle pattern, clusters of speckle appear, on top of a diffuse background.

wheregmax is the value of the normalized autocorrelation at(u ,v) Æ0. Typically one
can neglect the®/hI i term, and the normalized maximum autocorrelation relates to1¡ ®
asgmax Æ1Å (1¡ ®)2. Figure 4.7 showsgmax as a function of® for all values ofPandl
and for all 50 pump powers between 0 and 250 nJ. Each dataset traces out the following
dependence as function of pump power. Below threshold, we �ndgmax starting at
around 1.05 (gmax Æ1Å 1/hI i , with 20 counts per pixel in our lowest pump power
images), and closing in ongmax Æ1 as pump power is increased towards threshold.
At this stage,® is essentially 1 througout. As soon as threshold is crossed, the data
trace out the parabolic dependencegmax Æ1Å (1¡ ®)2, meaning that simultaneously®
decreases well below 1 andgmax increases well above1.

To �rst order, we indeed �nd that all datasets cluster around the predicted parabola
of Eq. (4.4, black curve). Closer inspection of Fig. 4.7 surprisingly shows systematic
deviations from this picture. In particular, the randomized plasmonic lattices with
high �ll factor show spatial correlations (gmax above the parabola) that exceed the
expectation derived from intensity statistics, while conversely for the randomized
plasmonic lattices with low �ll factors, below 5%, the data remain signi�cantly below
the parabola. The latter indicates that the intensity statistics is more wildly �uctuating
(® further from 1) then the spatial autocorrelation predicts. We propose that the fact that
there is a systematic deviation from the expectations derived for purely uncorrelated
disorder is an important starting point for future investigations: it shows that 2D random
plasmon arrays are an exciting platform to study lasing in correlated disorder systems.
For instance, for the very dilute systems, we hypothesize that we enter the regime
where our �eld of view can contain several uncoupled and spatially separated random
lasing modes simultaneously. To support this notion, in �gure 4.8 real space images
and spectra for this particular subset of dilute samples are shown. The above threshold

91
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spectrum for �ll fraction 1% and shuf�e 0 nm is signi�cantly different from that in
dense arrays, with the appearance of multiple narrow, apparently randomly located
peaks in a band around¸ Æ570 nm. The above threshold real space image exhibits
clusters of speckle on a diffuse background, instead of uniform speckle. This supports
the notion that this sample supports isolated lasing at spatially separated clusters of
particles. We envision that similar analysis can be applied to a plethora of other designer
disorder structures, random lasers and Anderson localization systems, to resolve what
are the lowest-loss modes.

4.5 Outlook

To conclude, in this Chapter we have shown that plasmonic DFB lasers are remarkably
robust to the introduction of positional disorder, as well as to random removal of
particles from the lattice. In fact, even upon removal of as many as 99% of the
particles from a periodic lattice, a lasing peak centered on a original Bragg peak of the
lattice remains. We attribute the remarkable resilience of lasing in this system to two
characteristics of our geometry. On one hand, the basic geometry of a 2D waveguide
with high gain favors lasing strongly, owing to the fact that the con�nement along one
direction creates a strong tendency for in-plane ampli�cation of spontaneous emission
(ASE) [22]. We estimate a gain length of just 10 to 15 lattice periods. The second
unique characteristic is that plasmonic particles are exceptionally strongly scattering.
As we found in our analysis of the purely periodic lattice, the plasmon particles scatter
over twenty times more strongly than dielectric particles of comparable size. As size
estimate, the inverse of the relative width of the band structure stop gap (3%) of the
periodic system provides as estimate that Bragg diffraction requires a distance of
just 15 microns (30 unit cells). Hence it is understandable that `moderate dilutions',
meaning removal of 50% to 80% of the particles leaves suf�cient feedback by scattering,
yet without any penalty in threshold. One could argue that removing particles may
evenlower the threshold owing to the fact that it reduces the likelihood of Ohmic
damping. An interesting future experiment is to understand precisely what the optimum
�lling fraction for lowest lasing threshold is, in dependence of particle scattering and
absorption cross sections. In addition, an exciting outlook of this work is that, besides
obvious interest for applications of disorder-immune lasing behavior, the geometry of
a planar organic waveguiding system with metal particle lattices or oligomers is very
amenable to studies of lasing in correlated disordered systems [24, 25]. The plasmon
particle arrays are very easy to make by lithography, and are embedded in an easily
fabricated gain medium that allows for simple room temperature experiments. Thus
they could enable studies of lasing in random 2D systems, and systems with correlated
disorder that are now performed using perforated III-V semiconductor membranes [25].
Using the techniques of organic electronics, one could furthermore envision scenarios
in which electrically driven operation is possible.
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5
Lasing in aperiodic systems

In this Chapter we demonstrate lasing in a suite of quasiperiodic and
aperiodic 2D lattices of silver particles in a dye doped waveguide. In
particular, starting from a square lattice of plasmon particles we use
deterministic generation sequences to generate Galois, Thue-Morse,
Fibonacci, Paperfolding, Rudin-Shapiro lattices that have a Fourier
spectrum that goes from discrete to increasingly continuous. We show
that if the original lattice has a periodicity that allows 2nd order Bragg
diffraction in the gain window, the lasing frequency in all structures
determined by the second order diffraction condition. However, the
outcoupling of laser emission is altered distinctly as compared to square
periodic particle arrays, as demonstrated by above threshold fourier
images. For different underlying lattice pitches, we also identify lasing on
basis of Bragg conditions speci�c for quasi-periodic lattices that do not
occur for periodic square arrays. We also discuss spatial auto-correlations
in the real-space output, showing distinct differences from random speckle.

5.1 Introduction

Enhancing light matter interactions is a much studied subject that has both scienti�c
and technological interest. Plasmonics is a promising route to enhance light matter
interaction based on strong coupling of light to resonant electron density oscillations in
nobel metals [1]. Metallic particles have been shown to exhibit strong scattering, near
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5 Lasing in aperiodic systems

�eld enhancement, and tight light �eld con�nement that has been used for enhancing
spectroscopy [2], lighting applications [3], sensors [4, 5], and photovoltaic structures
[6, 7]. Moreover, when plasmonic nanoparticles are placed in periodic arrays even
stronger interactions can occur due to the coupling of individual particle resonances
to the diffraction modes of the lattice, creating a sharp and low loss lattice resonance
[8–10].

This type of diffractive plasmon resonance has been employed by several workers
to realize plasmonic distributed feedback (DFB) lasers [11–13]. It has been shown
that the strong scattering strength of plasmonic particles gives rise to strong feedback
in this scattering type laser, much stronger than in conventional dielectric DFB lasers
that typically utilize small index-contrast periodic gratings. A DFB laser is a type of
scattering laser in which mirrors are replaced by an array of scatterers in which the
interparticle distance is chosen such that a second order Bragg diffraction condition
is satis�ed for frequencies within the bandwidth of the gain medium. Another type
of scattering laser has no �xed interparticle distance but a random con�guration of
particles. In such "random lasers" multiple scattering can result in an effective feedback
cavity suf�cient for lasing [14–17]. In contrast to the second order DFB laser a random
laser results in non-directional and multifrequency laser emission.

In this Chapter we study an intermediate case between periodic and random systems
consisting of aperiodic arrays [18–27]. Unlike random arrays, aperiodic systems can be
generated according to a deterministic generation sequence. In addition, unlike periodic
structures, aperiodic structures are not translationally invariant [28]. A classi�cation
scheme to organize the geometry of aperiodic systems can be made by looking at the
fourier transform of the structure [25]. The fourier transform of a periodic structure
exhibits in�nitely sharp Bragg peaks, whereas the fourier transform of an in�nite and
completely random system is �at. Aperiodic systems can have a fourier transform
comparable to these extremes or anywhere in between. For instance, quasiperiodic
structures are a particular subset of aperiodic systems and characterized by being more
periodic than random [25], while the Rudin-Shapiro structure is generally considered
to be close to random. In this work we study lasing in a suite of systems that span the
entire scale from periodic to random.

Although quasi/aperiodicity was introduced as a purely mathematical discovery,
a link was made with physics when it was shown that certain metallic alloys have a
quasiperiodic ordering [29]. Quasiperiodicity has since then become hugely important
in crystallography and proven to be such a breakthrough in solid state physics that in
2011 the Nobelprize in Chemistry was awarded to Levine and Steinhardt. Also in optics,
the photonic properties of aperiodic arrays have been subject of studies for the past
decades [22, 26, 30, 31], especially in framework of 1D and 2D photonic crystals, and
in case of plasmonics also in form of 2D particle lattices. In the context of plasmonics,
there are two main reasons for which aperiodic systems have received interest. First,
numerical studies [32] have claimed that aperiodic plasmonic particle arrays give rise
to an intensity enhancement as large as1012 due to large �uctuations of the local �elds.
Second, as opposed to periodic arrays, aperiodic systems exhibit a broadband optical
response [19]. These properties could make aperiodic systems applicable in many
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areas such as biosensors [23] and engineered SERS substrates. Demonstrations of this
have been given by Lee et al. [33] who used aperiodic metal particle arrays for optical
refractive index sensing in a micro�uidics device and for sensing a protein monolayer
[34]. Another application of quasiperiodic systems is in LEDs where quasiperiodicity
can result in more ef�cient light exctraction [35] because quasiperiodic systems exhibit
isotropic photonic bandgap and scattering of light. According to Dal Negro [25],
both the broadband response and the �eld enhancement effects are related to the type
of modes that are predicted to occur in aperiodic systems. Aperiodic arrays, are
believed to give rise tocritically localizedmodes that are characterized by multifractal
spatial patterns, large �uctuations of the local density of states and high near �eld
enhancement [36]. These modes are distinct from the in�nitely spatially extended
Bloch modes of periodic systems, and the exponentially localized modes of random
media (assuming Anderson localization is achieved [37]).

When viewing plasmon particle arrays as a research platform for scattering lasers,
aperiodic systems offer a way to get controlled randomness or aperiodicity in the
multiple scattering, making it possible to study lasing behaviour as a function of order
parameters such as spectral �atness. Studies on lasing action in aperiodic systems
so far have demonstrated effects such as ten-fold symmetric lasing spot patterns in
quasi-periodic photonic crystal lasers [38], reproducibility and robustness of the lasing
mode against structural �uctuations [39], multicolour operation [40] and a claimed
reduction in lasing threshold [41]. To our knowledge, these demonstrations have
all relied on dielectric structures. In particular, in those demonstrations that used
2D systems, workers used high-index slabs with aperiodic arrangements of weakly
scattering air holes. In this chapter we study 2D plasmonic aperiodic lasers consisting of
strongly scattering particles. In the next section, the experimental setup and measuring
procedure is shown, as well as the de�nition of 7 different lattices that span the scale
from periodic to random. We discuss lasing spectra, Fourier-space and real-space
output both for the case where the underlying square lattice does and does not support
Bragg conditions. Finally we summarize our results and give an outlook.

5.2 Aperiodic plasmonic lattice structures

We fabricate silver particle arrays on cover glass using electron beam lithography,
thermal evaporation, and lift off, following the procedure described in Chapter 2. The
silver particles have a diameter of 100 nm and a height of 30 nm. We use a thin
chromium adhesion layer. We create aperiodic lattices by starting with a square grid
of particle positions, and removing particles according to given generation sequences
for the Galois, Thue-Morse, Fibonacci, Paperfolding, and Rudin-Shapiro lattice. In
the appendix a summary of the generation sequences we use can be found. Using this
method for creating aperiodicity a regular 2D lattice underlies the aperiodic pattern,
which de�nes a starting pitch that is the minimum distance between particles. We
fabricated three samples: one for which the underlying 2D lattice has a pitch of 380
nm, one with an underlying particle pitch of 300 nm, and one with a pitch of 190 nm.
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According to Bragg's law, for a particle pitch of 380 (190) nm, the second (�rst) order
Bragg diffraction condition occurs within the bandwidth of the �uorescence emission
of the dye (Rh6G) we use, whereas for a pitch of 300 nm this is not the case. In
this Chapter we report on 7 different lattice types organized in the sequence periodic,
Galois, Fibonacci, Paperfolding, Thue-Morse, Rudin-Shapiro and random. We de�ne
random here by using a square grid as a starting point and randomly removing 50 %
of the particles. In �gure 5.1a, b, c, d, e, k and l we show SEM pictures of all lattices
for a pitch of 380 nm. This ordering sequence for organizing results is on basis of a
mathematical measure called "spectral �atness" given by

SF Æ

NM
q QN ,M

n,m jDFT {s(n ,m)}j

1
NM

P N ,M
n,m jDFT {s(n ,m)}j

. (5.1)

Input for this quantity is the digitized structure, essentially a matrix of 0's and 1's
representing absence and presence of particles on a site(m ,n). The denominator is
the arithmetic mean of the discrete Fourier transformDFT {s(n ,m)} of the digitized
structure, while the numerator represents the geometric mean. For a periodic structure
the spectral �atness equals 0, while for a random structure, the spectral �atness tends
to 1, for in�nite systems.

Figure 5.1a-g shows SEM images of the various lattices we fabricated (sample
pitch 380 nm), while Figure 5.1h-n shows Fourier transforms (absolute value of DFT,
or "structure factors") for all lattices. Note that these Fourier transforms have not been
obtained from the SEM images, but from �nite truncation (250 periods across, similar
to size of experimentally studied �elds) of the mathematically generated lattices,
where we have used Gaussian apodization to reduce truncation artefacts. For the
periodic lattice the DFT necessarily corresponds to the reciprocal lattice, i.e., isolated
±-spikes in a square grid of spacing2¼/d . For the Galois, Thue-Morse and Fibonacci
lattice, evidently many additional, largely discrete features appear, which is why these
structures, that are not translationally invariant, are considered "quasi-periodic". On
the other hand, the Rudin-Shapiro lattice has an almost densely �lled Brillouin zone,
and a spectral �atness that is close to that of the randomized lattice. It should be noted
that in the random system, while the Brillouin zone is essentially uniformly �lled, the
diffraction features at2¼/d still stand out. This is due to the fact that randomization
by particle removal from a random lattice still leaves spatial correlations. Table 5.1
lists spectral �atness calculated numerically from the DFT's, showing an increase from
low to high value, as lattices vary from periodic to random. Note that neither the
extremum 0, nor the extremum 1 are obtained for the periodic resp. random lattice,
a fact which we attribute to the �nite truncation and apodization in real space, and
correspondingly chosen �nite discretization in k-space, used to generate and sample
the DFTs. Empirically, we note that convergence of spectral �atness with structure
truncation is slow. As this equally affects the experiment and the mathematical analysis,
we have chosen to present values appropriate for the experimentally truncated samples.

After fabricating the particle arrays we spincoat a layer of dye doped SU8 2005
(0.25 wt %), which has a refractive index of 1.6 (Chapter 3) and a thickness of 450 nm.
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The thickness of the SU8 is chosen such that the SU8 layer acts as a waveguide that
supports one TE and one TM mode. The thickness is a trade off between requiring
single mode waveguiding on one hand, and good �eld con�nement in the gain medium
on the other hand.

Figure 5.1: Figure a-g shows SEM images of the various lattices we fabricated (sample
pitch 380 nm) together with the fourier transform of the corresponding array (h-n). The
fourier transform is calculated for a �nite grid with values 0 (corresponding to absence
of a particle) and 1 (corresponding to presence of a particle). In �gure (0) a schematic
of the setup is shown, depicting the path of excitation (green light) and of �uorescence
(red beam). Both excitation and �uorescence collection is done from the glass side of
the sample. With an extra �ip lens (between the green and purple mirrors) we can do
fourier imaging and spectrally resolved fourier imaging.

5.3 Lasing of aperiodic systems

We use an inverted �uorescence microscope in which the sample is excited from the
glass side with a green (532 nm) laser that provides sub-nanosecond pulses in the
sub-¹ J range. In �gure 5.1o a sketch of the inverted �uorescence microscopy imaging
setup is shown. We pump a spot of about 50¹ m across. Emission is collected from
the same side with an NA=1.45 objective and imaged onto a Andor CLARA CCD or
the slit of a Shamrock spectrometer coupled to a Si CCD detector. For a sequence of
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5 Lasing in aperiodic systems

Structure Spectral Flatness Threshold [¹ J]
Periodic 0.005 12.5
Galois 0.04 13.5
Thue-Morse 0.13 15.6
Fibonacci 0.17 14.6
Paperfolding 0.35 12.5
Rudin-Shapiro 0.81 15.6
Random 0.84 18.7

Table 5.1: Table with calculated spectral �atness as function of structure type, as well
as threshold pump power required to obtain lasing for the case of pitch 380 nm.

50 pump powers we collect single-shot spectra, fourier space images and real space
images. In �gure 5.2a emission spectra above the lasing threshold are shown for the
seven structures, all at underlying pitch of 380 nm. These spectra have been taken
only just above lasing threshold, and therefore show both the characteristic broad
spontaneous emission spectrum of Rh6G, peaking around 550 nm, and a sharp lasing
line. It can be seen that all arrays have a lasing wavelength of approximately 591
nm. This wavelength corresponds to the wavelength for which the second order Bragg
diffraction condition holds for a pitch of 380 nm, meaning thatd Æ¸/n W G, whered is
the lattice pitch,̧ the vacuum lasing wavelength, andnW G the waveguide mode index.
This result is consistent with our earlier studies on periodic arrays, and randomized
periodic arrays in which we randomly removed particles to obtain site occupation
numbers as low as 1%, that all show that the original periodic-lattice lasing condition
is robust against particle removal. Physically this can be understood by noting that
the Fourier transform in all cases shows strong peaks at the original reciprocal lattice
vectors.

In �gure 5.2b threshold curves for all arrays are shown, obtained by plotting the
emission intensity a bandwidth of 0.34 nm around the lasing peak. The input-output
curves demonstrate a clear kink in the slope corresponding to the lasing threshold.
Thresholds (see Table 5.1) vary by about a factor 1.5, while slope ef�ciencies vary
by about a factor two. The lowest threshold is obtained in the periodic case. This
result indicates that removing particles aids outcoupling of emission, as was also seen
for randomized structures in our earlier work. Quasiperiodic arrays appear to have
similar thresholds as the periodic lattice,while the more "spectrally �at" structure
(Rudin-Shapiro, Randomized) have higher threshold.

5.4 Lasing output in fourier space

In terms of spectra and input-output curves, the quasi/aperiodicity appears to have no,
or only a weak, effect on lasing. However, fourier images, i.e., parallel wave vector
resolved images, above lasing threshold clearly re�ect the quasi-/aperiodicity as can be
seen in �gure 5.3. Fourier imaging is obtained by �ipping an extra lens into the optical
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5.4 Lasing output in fourier space

Figure 5.2: Spectra above the lasing threshold for periodic, Galois, Thue-Morse,
Fibonacci, Paperfolding, Rudin-Shapiro and random arrays. The lasing wavelength is
the same to within 1 nm for all arrays and corresponds to the wavelength for which
the2nd order Bragg diffraction condition holds for a pitch of 380 nm. In b) threshold
curves are shown for all arrays. From these curves, we obtain threshold pump powers
of 12.5¹ J, 13.5¹ J, 15.6¹ J, 14.6¹ J, 12.5¹J, 15.6 ¹J, 18.7 ¹ J,

path at a focal distance away from the back focal plane of the imaging objective, in
between the dichroic mirror and the tube lens of the CCD. As in previous chapters,
images represent the output intensity as function of parallel emission wave vector
k jj Æ!/c (cosÁ,sin Á)sin µ, whereµ corresponds to polar angle (angle with the optical
axis), andÁ to azimuthal angle. Thus the center of each image corresponds to the
optical axis, and the outer rim to the microscope NA (1.45)

The fourier image of the periodic lattice shows a single peak in the center, which
indicates lasing at the second order Bragg condition. All quasiperiodic structures show
additional structure. The structure ranges from discrete peaks that are comparable in
intensity to thek jj Æ0 peak for the quasiperiodic lattices, (periodic up to Paperfolding),
to a smoother (but speckled) background for the Rudin-Shapiro and randomized case.

Comparing these fourier images with the fourier transforms in �gure 5.1 it can be
seen that the pattern in the fourier image correspond to the fourier transform of the
lattice. Therefore, whereas the lasing mode is unchanged when varying the periodicity
from periodic to aperiodic, the outcoupling of the lasing mode is altered distinctly
by the lattice. A physical picture is that essentially the underlying laser mode is the
same in all lattices, meaning it is formed by second order Bragg diffraction and carries
wavevectorsk jj Æ0, plus all diffraction orders of the original lattice. Upon outcoupling
thek jj Æ0 wave inherits the structure factor of the lattice as wave vector distribution.
Thus the lasing output has exactly the same wave vector structure as the diffraction
pattern one would obtain upon normal incidence excitation from the far �eld (in the
limit of weak multiple scattering interactions between particles, i.e., in the limit of
equally strong dipole moments on all sites).
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5 Lasing in aperiodic systems

Figure 5.3: Fourier images far above threshold, for periodic (a), Galois (b), Thue-
Morse (c), Fibonacci (d), Paperfolding (e), Rudin-Shapiro (f), and Random (g). The
fourier images are obtained for an excitation energy of 0.05¹ J. For all quasiperiodic
structures extra peaks appear besides the 2nd order Bragg peak in the middle atk jj Æ0.

5.5 Real space output

In addition to fourier space imaging we have also acquired real space images above
and below threshold. Below-threshold real-space images show plain poissonian noise,
as we also reported for randomized lattices in Chapter 4. However above threshold
patterns with large intensity �uctuations appear, which for random systems are known
as speckle [42]. Examples are shown in �gure 5.4 for all lattices. Clearly the speckle
is not random, and instead presents a pattern that re�ects the lattice in a nontrivial
way. When taking an autocorrelation of these real space images, the difference in
speckle patterns between the different structures becomes even clearer. In particular,
the quasiperiodic lattices show long range correlations, while instead the patterns with
lower spectral �atness show a narrow autocorrelation that has diffraction limited width.

We note that speckle patterns, while seemingly entirely random, in fact can be
used for applications due to their autocorrelation function. For instance, improvements
to microscopy have recently been show on basis of using speckle. Bertolotti et al.
[43] have shown non-invasive imagingthroughopaque media using the so-called
"memory effect", whereby speckle patterns obtained upon transmission through a
random medium are correlated as function of incidence angle [44]. Also, Mudry et
al. [45] have reported imaging of objects using illumination with speckle in a form
of structured illumination microscopy, while Katz et al. [46] have shown single shot
imaging of objects through completely opaque media upon incoherent illumination.
The key in these works is that the autocorrelation of speckle through a random medium
is well known, and that the object shape is imprinted in the image as a convolution of
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5.6 Lasing at other diffraction conditions

the object and speckle autocorrelation. From our work it appears that we can make light
sources on basis of deterministic aperiodic arrays that produce speckle patterns with
controlled auto correlations. In essence this gives control over the point-spread function
of speckle based imaging techniques, which may be used for extending speckle-based
imaging techniques, similar to point-spread function control in the more usual raster-
scanning imaging techniques [47], or the use of gratings as illumination in Structured
Illumination Microscopy [48, 49]. Aside from this potential application, the importance
of our real-space and Fourier space results taken together is that by deterministically
removing particles from the original diffractive array, it is possible to make a laser with
an output that does not emit a single beam, but in fact emits with characteristics that are
simply inherited from the binary amplitude mask that one imprints by simply removing
particles. We expect that this idea also extends to phase masks that one could generate
by changing particle sizes.

5.6 Lasing at other diffraction conditions

Periodic systems are expected to only support extended Bloch states, and to only lase
at Bragg conditions. Quasiperiodic systems, in contrast, may support lasing at different
d /¸ ratios, i.e., at Bragg-like conditions that appear as strong features in the Fourier
transform, yet do not correspond to a strict Bragg condition. In addition, aperiodic
systems have been predicted to support critically localized modes. For these reasons, it
is important to also analyze geometries that do not support lasing on the 2nd Bragg
diffraction order. In �gure 5.5h spectra are shown for maximum excitation power for
arrays with a pitch of 300 nm. For this pitch, within the bandwidth of the dye the1st

and2nd order Bragg diffraction condition can not be ful�lled. This explains why the
periodic array does not show any lasing: Bragg diffraction can not create a standing
wave for laser feedback. For the other lattices, we do see lasing at various wavelengths.
In particular, for the quasiperiodic lattices (Galois up to Paperfolding) we see discrete
and reproducible lasing lines at low thresholds. For the Rudin-Shapiro and randomized
lattice, in contrast, we have to pump signi�cantly harder (0.192¹ J for Rudin-Shapiro
and 0.289¹ J for the Random array, compared to 0.042¹ J for the Fibonacci structure),
to then obtain random lasing peaks. These observations are evident in �gure 5.5 in that
the quasiperiodic cases show sharp peaks on the familiar Rh6G spontaneous emission
spectrum, while the Rudin-Shapiro and randomized lattice show spectral narrowing
due to ASE peak near the gain maximum (550 nm), on top of which random lasing
peaks occur.

In addition to spectra, we show fourier images for maximum excitation power
in �gure 5.5a-g. For the periodic lattice, the only visible features are four circles,
indicating that emission occurs preferentially in the wave guide mode (circle radius
of curvature given by the mode index), that is coupled out diffractively, giving rise
to a repeated zone scheme dispersion slice (averaged over the bandwidth of the dye).
For the Rudin-Shapiro and randomized case, the structure is very similar, though the
circles appear narrower. This narrowing is due to the fact that ampli�ed spontaneous
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5 Lasing in aperiodic systems

Figure 5.4: Real space images and the logarithm of the normalized autocorrelation far
above the lasing threshold for all structures. The real space images have a �eld of view
of 20 ¹ m, and a clipped colorscale [ranges (223, 1898) (a), (225, 1423) (b), (204, 1051)
(c), (175, 512) (d), (241, 1333) (e), (189, 905)) (f), (189, 818) (g); ranges corresponding
to 1.4 times the minimum number of counts to 0.6 times the maximum number of
counts]. Color ranges for the resulting autocorrelations range from 1.0 (minimum, no
excess correlation) to the maximum correlation attained at(x, y) Æ(0,0), which is for
panels (h-n) 1.05, 1.12, 1.07, 1.14, 1.09, 1.07, 1.1. We ascribe no particular meaning to
this value, besides the fact that it is a measure for how far above threshold data was
taken. The scalebar is 3¹ m for the autocorrelations.

emission narrows the spectrum, which in turn reduces blurring of the observed bands.
As the pitch is now reduced (largerG, shifting the origins of the cirles outward) the
circles do not intersect atk jj , but rather at four intersection points at approximately
k jj /k 0 » 0.4 For the lasing lattices, again lasing spots appear across the entire back
aperture. However, now the pattern does not re�ect the Fourier transform of the lattice.

We assign the observation of new lasing conditions to the fact that the aperiodic
arrays have many more peaks in the fourier spectrum, which give rise to new Bragg-
like diffraction conditions. This can be illustrated using a calculated free-photon band
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5.6 Lasing at other diffraction conditions

Figure 5.5: Fourier images above lasing threshold for a pitch of 300 nm (a-g) and
spectra at maximum pump power, for periodic (a), Galois (b), Thue-Morse (c),
Fibonacci (d), Paperfolding (e), Rudin-Shapiro (f) and random (g) arrays. As can
be seen in �gure (h) the lasing wavelength is different for each structure, and lasing can
not be assigned to a Bragg condition of the underlying lattice. Moreover the periodic
system does not show a lasing peak.

diagram as shown in �gure 5.6. For a periodic system, one can �nd the repeated-zone
scheme free photon dispersion by convolving the dispersion relationjk jj j Æ!n W G/c
with the structure factor of the lattice, i.e., the comb of±-peaks situated at(m ,n)2¼/d .
Here convolution is over wave vector. Although a band structure has no formal
meaning for systems that are not periodic, one can arguably �nd an apparent repeated-
zone scheme free photon dispersion for quasi periodic systems by convoluting the
free-photon dispersion relation with the structure factors in Fig. 5.1. Examples are
shown for the case of a Fibonacci, Galois and Paperfolding lattice. Indicated as
horizontal lines are normalized lasing frequencies (nW Gd /¸ 0) at which we obtain
lasing. Samples withd Æ380 nm lase at 2nd order Bragg diffraction, while at half
the pitchd Æ190 nm, lasing matches the 1st order Bragg diffraction. Thed Æ300
samples lase at various conditions, notably at a band crossings that occur in several of
the structures atd /¸ W G ¼0.8, and at the M-point in case of the Galois lattice. While in
retrospect, lasing conditions in these samples may be reasonably explained by "strong"
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5 Lasing in aperiodic systems

Figure 5.6: Calculated band diagrams for a Galois, Fibonacci and Paperfolding array
obtained by convolving the lattice structure factor with the free photon dispersion.
Note that special points in the unit cell are labelled as¡, X ,M , being(0,0), (0,1) and
(1,1) in units of¼/d . In all diagrams the dashed cyan lines represent measured lasing
peak frequencies, for the lattices with 380, 190 and 300 nm, plotted in normalized
unitsnW Gd /¸ (where¸ is measured wavelength,d nominal pitch andnW G Æ1.54,
assumed �xed). Solid (dashed) cyan lines represent thed Æ380 nm (d Æ190 nm)
samples, lasing at second resp. �rst order Bragg diffraction. Other lines correspond to
thed Æ300 nm samples (plot colors in each diagram cycling through red, green, blue,
yellow, magenta, brown - note that lines overlap for closeby lasing conditions).

crossings in the dispersion diagrams, predicting of dominant lasing conditions is not
easy. One reason is that not just the appearance of a (pseudo)-Bragg condition is
required, but also the dye gain window enters as a weighting factor.

5.7 Conclusion and outlook

We have shown lasing in quasi- and aperiodic plasmonic particle arrays and made
a comparison with random and periodic systems. We show that, independent of the
spectral �atness of the structure, lasing occurs on the 2nd order Bragg diffraction
condition of the underlying lattice. However, above lasing threshold all fourier images
show that directionality of the laser emission is strongly altered and resemble the pattern
of the fourier transform of the lattice. We conclude that this is caused by the altered
outcoupling due to the introduced quasi- or aperiodicity. In addition, the periodicity
manifests itself in the speckle pattern, as is most clear from the autocorrelations of the
above threshold real space images. Finally, we have shown data measured on lattices
with an underlying particle pitch equal to 190 (half the 2nd order Bragg condition)
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and 300 nm. We demonstrated multifrequency lasing, where the lasing condition is
related to extra peaks in the fourier transform of the lattice, or in other words, extra
periodicities can replace the 2nd order Bragg condition. We substantiate this claim
by showing calculated band diagrams for Galois, Fibonacci and Paperfolding lattices
indicating the lasing frequencies.
We show that it is possible to tune the speckle patterns and control their autocorrelations.
This might be used in several applications, such as speckle based imaging techniques
and Structured Illumination Microscopy.
For future experiments it would be interesting to determine if it is possible to optimize
the system to give maximum �eld enhancement in such a way that it bene�ts lasing,
e.g. results in a lower lasing threshold. In addition, our work paves the way to study
many other quasiperiodicities in the context of lasing. More speci�c, systems without
an underlying square grid can still have band edge modes. For example, it has been
predicted that Golden-Angle spirals exhibit an analogue to the band edge modes of
periodic systems [25, p. 164] and it would be interesting to �nd out if lasing can take
place on these band edge modes. Penrose [50] and hyperuniform [51] lattices are
other examples for which band gaps and localized states exists and which would be
interesting to study in the context of lasing.

5.8 Appendix

Quasi- or aperiodicity can be implemented in an optical system by adjusting any
optical property according to a given generation sequence. For example, in Bragg
stacks the thickness of the re�ecting layers can be altered[40], or in photonic crystals
the hole size can be varied[52]. In this work we introduce aperiodicity by removing
particles. The periodic array is the starting con�guration for the other six periodicities,
where the random array is generated by randomly removing 50 % of the particles. The
remaining �ve periodicities are generated using generation sequences as also used by
Cao, dal Negro and Borivskina [25]

Fibonacci The Fibonacci sequence is well known because of the many situations in
which it can be applied. The sequence starts with two elements,F0 Æ1 andF1 Æ1. All
following sequence elementsFn are generated by adding the preceding two elements
together, orFn ÆFn¡ 2 Å Fn¡ 1. The resulting sequence therefore is 1, 1, 2, 3, 5, 8,
13, 21, 34, etc. Instead of using numbers, we can assign an entity toF0 andF1 in
which case the elementFn is generated by concatenating, instead of adding. If we set
F0 ÆA andF0 ÆB, then the �rst sequence elements become A, B, AB, BAB, ABBAB,
BABABBAB, ABBABBABABBAB, etc. In our samples we use the convention that
A corresponds to absence of a particle, and B corresponds to presence of a particle,
where the only free parameter is the distance between lattice sites, which we set equal
to 380 nm for all structures. A 1D Fibonacci grating therefore is obtained by taking the
sequence element that has enough lattice sites to span a speci�ed length. To extend
the 1D grating to a 2D particle array, several methods exist[53], however we use the
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5 Lasing in aperiodic systems

most straightforward method [36]. For each lattice sitem in the 1D particle row, we
transpose the row to de�ne a column vector. This directly de�nes them th column of
the 2D lattice whenever them th entry in the 1D grating is occupied. When them th
site, however, was empty them th colun is obtained by �ipping all entries (an empty
site becomes a particle and vice versa).

GaloisWe generate the Galois array usingGnÅ4 ÆGnÅ1 Å Gn . The starting values are
G1 Æ1, G2 Æ0, G3 Æ0, andG4 Æ0. If GnÅ4 ÆGnÅ1 Å Gn È 1 then we setGn Æ0, and
we use the convention that a value of 1 indicates the presence of a particle, whereas 0
is equivalent to an empty position. Now the 1D sequence is a concatenation of allGn

elements. The extension to 2D is generated as in the case of the Fibonacci array.

Thue-Morse The Thue-Morse sequence is generated by concatenating a Boolean
sequence with its complement. Starting withT1 Æ0 we obtain for the following
elements 01, 0110, 01101001, 0110100110010110, etc. Using the same conventions as
before and extending in the same way to 2D we obtain the complete Thue-Morse array.

Paper Folding A Paper Folding sequence is the sequence of left and right folds in
a paper that has been folded in half in the same directionn times. It is obtained by
creating a neighbouring element for each 0 or 1, where this added element alternates
between 0 and 1. If we start withP1 Æ1, then the next term isP2 Æ110 and the
following terms are1101100, 110110011100100, etc. Again, extension to 2D
proceeds as for the Fibonacci case.

Rudin-Shapiro The Rudin-Shapiro sequence has the largest value for spectral
�atness and is closest to the 50 % random array, but it is still constructed from a
generation sequence. We start with a seed, A from which we will construct a row of 4
letters, A, B, C and D. We use the following generation rules; A! AC, B! DC, C! AB
and D! AC and put the 2 generated elements at positioni ¢2 andi ¢2¡ 1. Thus, we get
A, AC, ACAB, ACABACDC, ACABACDCDC, etc. Now we use 4 rules to convert
from letters to 0 and 1 values, namely A! 0, B! 1, C! 0, and D! 1. From here on,
we use the same conventions as in the other arrays to convert from binary values to
particles and from a 1D row to a 2D array.
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Summary

Through light we see the world around us, both in every day life, but also in the
sense that through light mankind has elucidated the nature of stars, cells, and even
the structure of atoms. This fact is the main reason why light has been the subject
of so many studies and still is today. Humans have been developing their ability to
manipulate light since ancient history, ever since we were capable of making �re to
create light. Research on light has for a large part been purely curiousity driven, with
the sole purpose to get a fundamental understanding of the physics behind processes
involving light. Yet, nowadays, steering and manipulating light has turned out so
important for every day life that we could not even think of what life would be like
without the devices originating from discoveries that are in one way or another related
to understanding and using light. For example, understanding and being able to use
light is essential for designing ef�cient solar cells, in which light is converted into
electricity instead of being absorbed and dissipated as heat. Another application is in
lighting. We use arti�cial light everywhere around us and designing more ef�cient
light sources has, as do solar cells, a huge environmental interest. A third area in which
light can be used is information technology. At the moment, information technology is
mainly based on electronic circuits in which electrons are the information carriers. To
keep pace with Moore's law that describes that on-chip circuit density and operation
speed increase exponentially, a technology other then the current technology using
electronic circuits needs to be developed since electronics suffers from issues with
dissipation, and signal bandwidth. If one could steer and manipulate light on a chip,
just as is possible with electrons in an electronic circuit, then light could provide the
solution. The great bene�ts of light in the context of information technology is that
�rst, it travels faster then signals do in an electronic circuit, second, it can be losslessly
transported, and third it can be multiplexed as a light signal typically contains many
colors each of which can be an individual information channel. Two challenges in
using light for such applications are 1) the interaction strength of light with matter is
weak compared to matter-matter interactions which makes it a challenge to manipulate
light just as is done for electrons, and 2) light is limited by the diffraction limit, as is
any wave. For visible light, this size limit is larger then the typical size of components
in an electrical circuit. In the �eld of plasmonics exactly these two challenges are
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adressed. Plasmonic materials are materials, typically metals such as gold or silver, in
which electrons move freely, such that incident light can strongly couple to the free
electron cloud. Besides the increased coupling strength, electromagnetic �elds coupled
to these free electrons are also con�ned, enabling subdiffraction limited light �elds.
Current research in the �eld of nanophotonics revolves around manipulating light
at the nanoscale, such that we can bene�t from its potential in the above mentioned
applications, but also to get a fundamental understanding. In this thesis, we use
plasmonics to create a laser. Since the birth of plasmonics, there has been an interest
in designing lasers with plasmonics. The large interest has been mainly motivated by
applications, e.g. from the perspective of creating an on chip coherent light source that
is exceptionally small, smaller than the diffraction limit. In this thesis, we focus on
obtaining a fundamental understanding of a simple system that consists of the following
ingredients: (1) a gain medium, and (2) periodic arrays of strongly scattering plasmon
particles. We start with very basic questions. What are the requirements to get lasing?
How does strong scattering of plasmonic particles change these requirements compared
to dielectric lasers that use similar feedback by scattering? How much can we disturb
this system without destroying our laser?
In Chapter 1 we �rst explain what makes plasmonic particles interesting in terms
of their scattering properties, and motivate why to use them to create a laser cavity.
Second, we introduce the ingredients of our laser, namely the physics of plasmon
particles, of feedback by periodic diffractive systems, and of gain. The subject of lasing
requires a basic understanding of the Jablonski diagram describing the energy levels of
�uorophores, spontaneous and stimulated emission and basic laser behaviour. Finally,
we review the subject of plasmon lasers in the broadest sense and motivate how our
work complements other plasmon laser types.
In Chapter 2 experimental results are presented for a laser in which we use a simple
diffractive square array of silver disks embedded in a waveguide with gain. We
demonstrate that lasing can occur when using plasmonic scatterers as feedback elements.
We not only show the typical linewidth narrowing and threshold curves expected for
lasing, but in addition measure fourier images, and show how to map dispersion
diagrams from �uorescence emission, making use of fourier imaging. Fourier plane
imaging is a method in which one measures quantities as function of wave vector, i.e.,
angle, instead of imaging real space, i.e., position. Such dispersion diagrams present the
optical analogon of an electronic band structure, and are useful tools in studying lasing.
Finally, we compare measurements done with silver scatterers with measurements
done on gold and TiO2 scatterers. From this, we conclude that silver scatterers alter
the dispersion diagram that summarizes the mode structure of the periodic scattering
system that provides the feedback for lasing much more then gold and TiO2 do. This is
due to its strong plasmonic scattering, as witnessed by e.g. the size of the stop gap in
the band diagram for silver. In this study, the resonance frequency of the scatterers in
the waveguide is red shifted with respect to the sponteanous emission spectrum of the
dye. In Chapter 3 we show results on a system containing again silver scatterers but
where we tune the resonance frequency of our silver scatterer throught the emission
frequency of the emitter. To enable this, we use a FRET pair of dyes to red shift
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the frequency window in which we can obtain gain while enabling excitation at 532
nm. Subsequently, we tune the resonance frequency of our scatterer by changing the
size, where we vary the silver disk diameter from 40 to 125 nm. Using polarization-
resolved spectroscopic Fourier imaging we unravel the band structure dependence of
particle size. From the data we conclude that 1) relative stop gap width correlates
with scattering strength and 2) the band edge on which the system starts to lase is
determined by whether particle resonance is above or below the 2nd order Bragg
diffraction lasing condition. Having established the effect of strong scattering strength,
in Chapter 4 we change direction by studying randomized particle lattices. Because
plasmonic particles are such good scatterers, we hypothesize that disturbing our system
by randomization should have less of an effect on lasing. In Chapter 4 we demonstrate
that this is indeed the case. We introduce randomness, starting from a square particle
grid and either randomly removing particles or randomly repositioning the particles
within a set area. We show that lasing persists even when 99% of the particles are
randomly removed. Remarkably such a strong perturbation leaves the lasing condition,
i.e., the spectral position and width of the laser line, unaffected, while only having a
moderate effect on the lasing threshold. Moreover, we introduce correlation methods,
and intensity statistics analysis to analyse real space speckle images. This technique
allows us to 1) differentiate between lasing and spontaneous emission, and 2) show
that strongly randomized lattices exhibit different speckle statistics as compared to the
perfect periodic array. Finally, in Chapter 5 we move into the realm of aperiodic and
quasiperiodic system, thereby studying systems that are intermediate to periodic and
randomized lattices. We create aperiodic lattices by applying deterministic number
sequences to decide which particles in an underlying square lattice to keep, and which
to remove. In this way we can create quasi-crystalline lattices, such as Galois and
Fibonacci lattices, as well as lattices like the Rudin-Shapiro structure, that have a
Fourier transform that is almost as �at as that of a random lattice. We show that when
choosing the underlying pitch to match the 2nd order Bragg condition, lasing is hardly
affected by the altered periodicity in the sense that the lasing mode is the same as for
the periodic case. However, the quasi- or aperiodic structure is visible in the above-
threshold fourier images, which re�ect the fourier transform of the particle lattice. In
addition, speckle statistics shows that speckle is very much determined by the spatial
structure of the aperiodic lattice. In other words, the spatial speckle autocorrelation is
quite different from aperiodic structure to aperiodic structure. Finally, we extend the
study to lattices with a different underlying particle pitch and show that here lasing can
occur on extra diffraction conditions that do not exist in periodic lattices, but appear in
quasi-crystalline structures.
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Met licht kunnen we de wereld om ons heen waarnemen. Dit gebruiken we niet alleen
in ons dagelijkse bestaan, maar ook heeft licht de mensheid in staat gesteld een inzicht
te krijgen in de samenstelling en vorming van sterren, cellen, en zelfs de structuur van
atomen. Hierdoor is licht door de eeuwen heen het onderwerp van vele studies geweest
en ook vandaag de dag nog wordt licht onderzocht. Al sinds de mensheid in staat is
om vuur te maken om licht te creeëren kunnen we licht manipuleren. Onderzoek naar
licht was altijd grotendeels gedreven door nieuwsgierigheid waarbij het doel was om
een fundamenteel begrip te krijgen van de natuurkunde achter processen die te maken
hebben met licht. Tegenwoordig is gebleken dat deze nieuwsgierigheidsgedreven
studies ertoe geleid hebben dat we licht zo kunnen sturen en manipuleren dat we het
kunnen gebruiken in vele praktische toepassingen en technologieën. We kunnen ons
niet meer voorstellen hoe ons leven er uit zou zien zonder de toepassingen die hun
oorsprong hebben in ontdekkingen die op de één of andere manier gerelateerd zijn
aan het begrip van licht. Denk bijvoorbeeld aan zonnecellen, waarbij we optische
technieken gebruiken om licht ef�ciënter te kunnen omzetten naar elektriciteit, in plaats
van dat het geabsorbeerd en gedissipeerd wordt als warmte. Een andere toepassing
is verlichting. Kunstmatig licht gebruiken we overal om ons heen, en het ontwerpen
van een lichtbron die veel ef�ciënter is dan de gloeilamp van Edison heeft, net als
zonnecellen, een belangrijke impact op het milieu. Een derde toepassingsgebied
waar licht voor gebruikt kan worden is in de informatie technologie. Momenteel
is informatietechnologie gebaseerd op elektronische circuits waarin elektronen de
informatiedragers zijn. Moore's wet beschrijft dat de dichtheid van circuit elementen en
hun snelheid exponentieel toenemen. Om deze voorspelling waar te blijven maken moet
een nieuwe technologie ontwikkeld worden die anders is dan de huidige technologie die
gebruik maakt van elektronische circuits, omdat elektronica uiteindelijk tegen grenzen
aan zal lopen die gesteld worden door dissipatie en signaal bandbreedte. Als we de
mogelijkheid hebben om op een chip licht te sturen en manipuleren net zoals dat bij
elektronen mogelijk is, dan zou licht de oplossing kunnen brengen. Er zijn drie grote
voordelen die licht biedt in de context van informatie technologie. Ten eerste plant
licht zich sneller voort. Ten tweede kan licht zonder verliezen getransporteerd worden.
Tot slot kunnen we licht multiplexen omdat het uit meerdere kleuren bestaat die elk
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afzonderlijk een informatie kanaal kunnen vormen. Het feit dat het gebruik van licht
in deze toepassing nog niet gerealiseerd is heeft twee oorzaken. Licht heeft een hele
zwakke interactie met materie en dit maakt het lastig licht te manipuleren zoals gedaan
wordt voor elektronen. Met andere woorden, het equivalent van een transistor is voor
licht moeilijk te realiseren. Daarnaast wordt het gebruik van licht beperkt door de
diffractielimiet, zoals dat voor elke golf het geval is. De diffractielimiet zegt dat het
lichtveld altijd groter is dan de helft van de gol�engte. Voor zichtbaar licht betekent
dit dat de minimum afmeting altijd groter is dan de typische component grootte in een
elektrisch circuit. Het werkgebied van de plasmonica adresseert precies deze twee
uitdagingen. Plasmonische materialen zijn metalen, waarin de elektronen vrij kunnen
bewegen. De wolk van vrije elektronen heeft intrinsiek een resonantie die sterk kan
koppelen met invallend licht. Typische plasmonische materialen zijn metalen zoals
goud en zilver waarbij zilver in het zichtbare deel van het optisch spectrum de voorkeur
heeft qua verliezen. Behalve de versterkte koppeling tussen plasmonische materialen
en licht zijn electromagnetische velden gekoppeld aan de vrije elektronen ook nauwer
opgesloten, wat het mogelijk maakt de diffractielimiet te doorbreken.
Het huidige onderzoek in het veld van de nanofotonica draait om het manipuleren van
licht op de nanoschaal zodat we licht kunnen gebruiken in de hierboven genoemde
toepassingen, maar ook om een fundamenteel begrip te krijgen. In dit proefschrift
gebruiken we nanofotonica om een laser te creëren. Al sinds de geboorte van plasmo-
nica is er interesse geweest in het ontwerpen van lasers met plasmonische materialen.
Deze grote interesse vloeit voornamelijk voort uit het vooruitzicht van toepassingen,
zoals bijvoorbeeld het mogelijk maken van een coherente licht bron geintegreerd op
een chip, die een afmeting heeft kleiner dan de diffractie limiet. In dit proefschrift
richten we ons voornamelijk op het verkrijgen van een fundamenteel begrip van een
simpel systeem dat bestaat uit de volgende ingrediënten: (1) een versterkend medium
en (2) periodieke roosters van sterk verstrooiende plasmonische deeltjes. We beginnen
met simpele basisvragen. Wat zijn de vereisten om lasing te krijgen in dit systeem?
Hoe beïnvloedt de sterke verstrooing van zilveren deeltjes deze vereisten wanneer we
een vergelijking maken met dielektrische lasers met dezelfde vorm van feedback? En
hoeveel wanorde kunnen we in zo'n sterk verstrooiend rooster introduceren waarbij het
systeem nog steeds als laser werkt?
In hoofdstuk 1 leggen we uit waarom plasmonische deeltjes zo interessant zijn in
termen van hun verstrooiingseigenschappen. We motiveren waarom we ze gebruiken
om een trilholte voor een laser te creëren. Vervolgens introduceren we de ingrediënten
van onze laser, namelijk de natuurkunde van plasmon deeltjes, terugkoppeling door
een periodiek diffractief systeem en versterking. Het onderwerp van lasers vereist
basiskennis van het Jablonski diagram dat de energieniveaus beschrijft van �uoroforen,
spontane en gestimuleerde emissie en generiek gedrag van lasers. Tot slot vatten we
samen wat er in de literatuur al gerapporteerd is in de context van plasmon lasers en
we motiveren hoe ons werk complementair is aan andere plasmon laser types.
In hoofdstuk 2 presenteren we experimentele resultaten voor een laser waarin we een
simpel diffractief vierkant rooster van zilveren nanoschijven gebruiken die ingebed zijn
in een golfgeleider met �uoroforen. We demonstreren dat dit systeem met plasmonische
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deeltjes als terugkoppelingselement als laser werkt. We meten hierbij niet alleen
de lijnbreedte versmalling en drempelcurves zoals ze er typisch uit zien voor een
laser, maar complementair hieraan meten we ook fourier afbeeldingen. Fouriervlak
beeldvorming is een methode waarin observabelen als functie van golfvector, en
daarmee als functie van de hoek gemeten worden, in plaats van de gebruikelijke
reeële beeldvorming waarbij observabelen als functie van posite afgebeeld worden.
Daarnaast gebruiken we een techniek om fourier afbeeldingen langs één as spectraal op
te lossen, wat ons in staat stelt bandendiagrammen te meten met �uorescentie. Zulke
dispersie diagrammen zijn het optische analogon van een elektronische bandenstructuur,
en zijn een nuttige techniek voor het bestuderen van periodieke plasmon structuren,
en de lasers die we daaruit maken. Tot slot vergelijken we metingen gedaan met
zilveren verstrooiers met metingen gedaan met gouden en titanium dioxide verstrooiers.
Uit deze vergelijking kunnen we concluderen dat zilveren verstrooiers het dispersie
diagram veel meer veranderen dan gouden en titanium dioxide verstrooiers doen,
wanneer we het bandendiagram vergelijken met het ideale bandendiagram waarin
tegengesteld propagerende golven geen interactie met elkaar hebben. Dit wordt
veroorzaakt door de sterke plasmonische verstrooing van de zilverdeeltjes, zoals we
kunnen opmaken uit bijvoorbeeld de grootte van de stopgap in het bandendiagram.
In dit onderzoek is de resonantie frequentie van de verstrooiers in de golfgeleider
roodverschoven ten opzichte van het spectrum van spontane emissie van de �uorofoor.
In hoofdstuk 3 laten we resultaten zien van een systeem dat weer dezelfde zilveren
verstrooiers bevat, maar waar we de resonantie frequentie van onze verstrooier door
het emissie spectrum van de �uorofoor schuiven. Om dit mogelijk te maken gebruiken
we een FRET paar van twee verschilende �uoroforen om het frequentie bereik waarin
we versterking hebben te verschuiven naar langere gol�engtes, maar waarmee we
de �uoroforen nog steeds kunnen exciteren met een pompgol�engte van 532 nm.
Vervolgens veranderen we de resonantie frequentie van de verstrooier door de grootte
ervan te veranderen. Met behulp van polarisatie opgeloste spectroscopische fourier
afbeeldingen ontravelen we de bandenstructuur als functie van deeltjesgrootte. Uit
de data kunnen we concluderen dat 1) de relatieve stopgap breedte correleert met
verstrooingssterkte, en 2) de bandkant waarop het systeem laseremissie begint uit te
zenden wordt bepaald door of de deeltjesresonantie boven of beneden de tweede orde
Bragg diffractie conditie is.
Waar hoofdstuk 2 en 3 draaiden om een volledige karakterisatie van lasers gemaakt
uit periodieke roosters van deeltjes, richten we ons in hoofdstuk 4 en 5 op de vraag
hoe dit systeem verandert als we het periodieke rooster ernstig verstoren. In hoofdstuk
4 bestuderen we deeltjesroosters met aanzienlijke willekeurige verstoringen. We
introduceren wanorde door vanuit een vierkant periodiek rooster deeltjes willekeurig
te herpositioneren in een gegeven gebied rondom de startpositie, en door willekeurig
deeltjes weg te halen. We laten zien dat het systeem nog steeds een laser is, zelfs
wanneer we 99% van de deeltjes willekeurig verwijderen. Opvallend is dat deze
sterke verstoring de laserconditie, dat wil zeggen de spectrale positie en breedte
van de laserlijn niet beïnvloedt en er een minimaal effect op de laser drempel is.
Daarnaast analyseren we microscopie-afbeeldingen in de reeele ruimte die we gemaakt
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hebben van de lasers boven de laserdrempel. Deze afbeeldingen laten schijnbaar
willekeurige spikkels zien. Zulke speckle is bekend uit onderzoek aan verstrooiing
van licht aan willekeurige systemen. We analyseren ruimtelijke correlaties in de
spikkelpatronen, en ook kansverdelingen in intensiteit. Tot slot gaan we in hoofdstuk
5 van gerandomiseerde roosters naar het rijk van aperiodieke en quasiperiodieke
systemen, waarbij we systemen bestuderen die intermediair zijn aan periodieke en
gerandomiseerde roosters. We de�nieren aperiodieke roosters door deterministische
getallensequenties toe te passen om te bepalen welke deeltjes in een onderliggend
vierkante rooster blijven, en welke verwijderd worden. Op deze manier kunnen
we quasi-kristallijne roosters genereren, zoals Galois en Fibonacci roosters, evenals
roosters als het Rudin-Shapiro rooster die een fourier transformatie hebben die bijna net
zo vlak is als dat van een volledig wanordelijk rooster. We laten zien dat wanneer we de
onderliggende onderlinge deeltjesafstand zo kiezen dat deze aan de tweede orde Bragg
conditie voldoet, de laser eigenschappen bijna niet veranderen in de zin dat het systeem
op dezelfde lasermode opereert als voor het periodieke geval. De quasi- en aperiodieke
structuur is wel duidelijk zichtbaar in fourier afbeeldingen boven de drempel, aangezien
deze fourier images het patroon van de fourier transformatie van het deeltjesrooster
laten zien. Speckle statistiek laat zien dat de speckle ruimtelijke correlaties heeft die
bepaald worden door de structuur van het aperiodieke rooster. Tot slot zetten we deze
studie voort naar roosters met een onderliggende onderlinge deeltjesafstand die niet
overeenkomt met de tweede Bragg conditie en vinden we nieuwe condities waaronder
laserwerking optreed. We laten zien dat zulke systemen ook als laser kunnen werken op
extra diffractie condities die niet voorkomen in periodieke roosters, maar die speci�ek
zijn voor quasi-kristallijne structuren.
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Mei ljocht kinne wy de wrâld om ûs hinne sjen. Dit brûke wy net allinne yn ûs
deistich bestean, mar ek hat ljocht de minskheid yn steat steld in ynsjoch te krijen
yn de gearstalling en foarming fan stjerren, sellen, en sels de struktuer fan atomen.
Hjirtroch hat ljocht troch de ieuwen hinne it underwerp fan in protte stúdzjes west en ek
hjoed-de-dei noch wurdt ljocht ûndersocht. Al sûnt it minskdom yn steat is om fjoer te
meitsjen om ljocht te kreëarjen kinne wy ljocht manipulearje. Undersiik nei ljocht wie
altyd �erhinne dreaun troch nijsgjirrigens wêrby't doel wie om in fûneminteel begryp te
krijen fan de natuerkunde efter prosessen dy't te meitsjen ha mei ljocht. Tsjinwurdich
hat bliken dien dat dizze út nijsgjirrigens dreaun stúdzjes der ta laad ha dat wy ljocht sa
stjoere en manipulearje kinne dat wy it brûke kinne yn in protte praktyske tapassingen
en technologyen. Wy kinne ûs net mear yntinke hoe't ús libben der út sjen soe sûnder
de tapassingen die harren oarsprong ha yn dy ûntdekkingen dy't op de ien of oare
manier in relaasje ha mei it begryp fan ljocht. Tink bygelyks oan sinnesellen, wêrby't
wy optyske techniken brûke om ljocht ef�sijint om te setten nei elektrisiteit, ynstee
fan dat it absorbearje en ferlern giet oan hjittens. In oare tapassing is ferljochting.
Keunstmjittich ljocht brûke wy oeral om ús hinne, en it ûntwerp fan in ljochtboarne
dy't folle ef�sjinter is as de gloeilampe fan Edison hat, lykas sinnesellen, in wichtige
yn�oed op it miljeu. In tredde tapassingsgebiet wêrfoar ljocht brûkt wurde kin, is yn de
ynformaasjetechnology. Op it stuit is ynformaasjetechnology baseare op elektroanyske
sirkwys wêryn elektronen de ynformaasjedragers binne. De wet fan Moore beskriuwt
dat de tichtens fan sirkwy eleminten en harren gong eksponinsjeel tanimme. Om dizze
foarsizzing wier te meitsjen bliuwe moat in nije technology ûntwikkele wurde dy't
oars is as de hjoeddeiske technology dy't gebrûk makket fan elektroanyske sirkwys,
omdat elektroanika úteinlik tsjin grinzen oanrint dy't fêststeld wurde troch ferliezen
en sinjaal bânbreedte. At wy de mooglikheid ha om op in chip ljocht te stjoeren en te
manipulearjen krekt as dat by elektroanen mooglik is, dan soe ljocht de oplossing bringe
kinne. Der binne trije grutte foardielen oan it gebrûk fan ljocht yn de kontekst fan
ynformaasjetechnology. Earst plantet ljocht har sneller fuort. Twad kin ljocht sûnder
ferliezen transporteard wurde. Ta beslút: ljocht kinne wy multiplexe omdat it út mear
kleuren bestiet dy 't elts apart fan inoar in ynformaasje kanaal foarmje kinne.It feit dat it
brûken fan ljocht yn dizze tapassing noch net realisearre is hat twa oarsaken. Ljocht hat
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mar in bytsje ynteraksje mei matearje en dit makket it lêstich ljocht te manipulearjen
lykas dien wurdt foar elektroanen. Mei oare wurden: it lykweardige fan in transistor
is foar ljocht min te realisearjen. Dêrneist wurdt it brûken fan ljocht beheind troch de
diffraksjelimyt lykas dat foar eltse weach jildt. De diffraksjelimyt seit dat it ljochtfjild
altyd greater is as de helte fan de weachlingte. Foar sichtber ljocht betsjut dit dat
de lytste ôfmjitting altyd greater is as de tipyske komponent grutte yn in elektrysk
sirkwie. It wurkgebiet fan de plasmonica adresseart mei krektens dizze twa útdagingen.
Plasmonyske materialen binne metalen lykas goud en sulver wêrby't sulver yn it
sichtbere diel fan it optysk spektrum de foarkar hat wat ferlies oanbelanget. Behalven de
fersterke koppeling tusken plasmonyske materialen en ljocht binne elektromachnetyske
fjilden , keppele oan de frije elektroanen, ek nauwer opsletten, wat it mooglik makket de
diffraksjelimyt te trochbrekken. It hjoeddeiske ûndersyk yn it fjild fan de nanofotonika
draait om it manipulearen fan ljocht op de nanoskaal sadat wy ljocht brûke kinne yn
de hjirboppe neamde tapassingen, mar ek om in fundamintiel begryp te krijen. Yn
dit proefskrift brûke wy nanofotonika om in laser te meitsjen. Al sûnt de berte fan
plasmonika hat der niget west yn it ûntwerpen fan lasers mei plasmonyske materialen.
Dizze greate niget komt benammen troch it sicht op tapassingen lykas it mooglik
meitsjen fan in coherente ljochtbron yntegrearreop in chip, dy't in fômjitting hat lytser
as de diffraksjelimyt. Yn dit proefskrift rjochtsje wy ús benammen op it krijen fan in
fundamintiel begryp fan in ienfâldich systeem dat bestiet út de folgjende yngrediïnten:1
in fersterkjend medium en 2 perioadike roasters fan sterk ferstruiende plasmonyske
dieltsjes . Wy begjinne mei ienfâldige basisfragen. Wat binne de easken om lasing te
krijen yn dit systeem? Hoe beyn�oedet de sterke struijing fan sulveren dieltsjes dizze
easken wannear't wy in ferliking meitsje mei dielektryske lasers mei deselde foarm
fan feedback? En hoefolle dusoarder kinne wy yn sa'n sterk struijend roaster yn�ere
wêrby't it systeem noch hieltyd as laser wurket? Yn haadstik 1 lizze wy út wêrom
plasmonyske dieltsjes sa nijsgjirrich binne yn termen fan harren struijingseigenskippen.
Wy jouwe oan wêrom wy se brûke om in trilholte foar in laser te meitsjen. Fierders
yntroduseare wy de ingrediïnten fan ús laser nammentlik de natuurkunde fan plasmon
dieltsjes,weromkoppeling troch in periodyk diffraktyf systeem en fersterking. It
ûnderwerp fan lasers easket basiskundem fan it Jablonski diagram dat de energieniveaus
beskriuwt fan �uoroforen, spontane en fuortsterke útstjit en generyk gedrach fan lasers.
Ta beslút fetsje wy gear wat der yn de literatuur al rapportearre is yn de kontekst
fan plasmon lasers en wy lizze út hoe't ús wurk oanfuljend is oan oare plasmon
laser types. Yn haadstik 2 presintearje wy experimentele rissultaten foar in laser
wêryn't wy in ienfâldich diffraktyf fjouwerkant roaster fan sulveren nanoskiven brûke
dy't ynbêdde binne yn in weachlieding mei �uorofoaren. Wy demonstrearje dat dit
systeem mei plasmonyske dieltsjes as weromkoppelingselemint as laser wurket. Wy
mjitte hjirby net allinnich de linebreedte, fersmelling en drompelcurves lykas hja
der typysk útsjogge foar in laser mar komplementair hjiroan mjitte wy ek fourier
ôfbyldingen. Fourier�akke byldfoarming is in methoade wêrmei't opservabelen as
funksje fan weachvector en dêrmei as funksje fan de hoek metten wurde, ynsté fan de
gebrûkelike reeële byldfoarming wêrby't observabelen as funksje fan posysje ôfbylde
wurde. Dêrneist brûke wy in technyk om fourier ôfbyldingen by ien as lâns spektraal
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op te lossen wat ús yn steat stelt bândiagrammen te mjitten mei �uorescentie. Sokke
dispersie diagrammen binne it optyske analogon fan in elektroanyske bânstruktuur
en binne in nuttige technyk foar it bestudearjen fan periodike plasmon strukturen
en de lasers dy't wy dêrút meitsje. Ta beslút fergelykje wy mjittingen dien mei
sulveren struijers mei mjittingen dien mei gouden en titanium dioxide struijers. Ut
dizze ferliking kinne wy opmeitsje dat sulveren struijers it dispersie diagram folle
mear feroarje as gouden en titanium dioxide struijers dogge, as wy it bândiagram
ferlykje mei it ideale bândiagram wêryn tsjinsteld propagerende weagen gjin ynteraksje
mei inoar hawwe. Dit wurdt feroarsake troch de sterke plasmonyske struijing fan
de sulverdieltsjes, lykas wy opmeitsje kinne út bygelyks de greatte fan de stopgap
yn it bândiagram. Yn dit ûndersyk is de resonantie freguentie fan de struijers yn
de weachlieding readferskood yn it ljocht fan it spektrum fan spontane útstjit fan de
�uorofoor. Yn haadstik 3 litte wy risseltaten sjen fan in systeem dat wer deselde
sulveren struijers hat, mar dêr't wy de resonante frekwinsje fan ús struijer troch it
emissie spectrum fan de �uorofoor skowe. Om dit mooglik te meitsjen brûke wy in
FRET pear fan twa ûngelikense �uoroforen om it frekwinsje berik dêr't wy fersterking
yn hawwe te ferskowen nei langere weachlingtes, mar mei hokker wy de �uoroforen
noch hieltyd exciteare kinne mei pompweachlingte fan 532 nm. Fierdersoan feroarje
wy de resonantie frekwinsje fan de struijer troch de greatte dêrfan te feroarjen. Mei help
fan polarisatie oploste spectroscopyske fourier ôfbyldingen raffelje wy de bânstruktuur
as funksje fan dieltsjesgreatte út. Út de data kinne wy de konklúzje lûke dat 1) de
relatieve stopgap breedte gearhinget mei struijingssterkte en 2) de bânkant wêrop it
systeem laserútstjit begjint te jaan bepaald wurdt troch de dieltsjesresonânsje boppe
of ûnder de twadde orde Bragg diffraksje. Dêr't haadstik 2 en 3 om in folsleine
beskriuwing fan lasers makke út perodike roasters fan dieltsjes, rjochtsje wy ús yn
haadstik 4 en 5 op de fraach hoe't dit systeem feroaret as wy it perodike roaster
bot fersteure. Yn haadstik 4 bestudearje wy dieltjesroasters mei frijwat eigenwillige
fersteuringen. Wy helje disoarder binnen troch fanút in fjouwerkant periodyk roaster
dieltjes eigenwillich in nij plak te jaan yn in fêststeand gebiet om de startposysje hinne
en troch eigenwillich dieltjes wei te heljen. Wy litte sjen dat it systeem noch hieltyd
in laser is, sels as wy 99 prosint fan de dieltsjes eigenwillich fuorthelje. Opfallend
is dat dizze sterke fersteuring de laserkondysje,dat wol sizze de spectrale posysje en
breedte fan de laserline, net beyn�oedet en dat der in sa'n lyts mooglik effekt op de
laser drompel is. Dêrneist analiseare wy mikroskopyske ôfbyldingen yn de wurklike
rûmte dy't wy makke hawwe fan de lasers boppe de laserdrompel. Dizze ôfbyldingen
litte nei't it liket eigenwillige spikkels sjen. Sok speckle is bekend út ûndersyk oan
struijing fan ljocht oan eigenwillige systemen. Wy analiseare rûmtlike gearhing yn de
spikkelpatroanen en ek kânsferdielingen yn intensiteit. Ta beslút geane wy yn haadstik
5 fan randomisearde roasters nei it ryk fan aperiodike en sabeareperiodike systemen
wêrby't wy systemen bestdearje dy't yntermediair binne oan periodike randomisearde
roasters. Wy de�neare aperiodike roasters troch deterministyske getallesequenties ta te
passen om te bepalen hokker dieltsjes yn in ûnderlizzend fjouwerkant roaster bliuwe en
hokker fuorthelle wurde. Op dizze wize kinne wy sabeare-kristalline roasters meitsje
lykas Galois en Fibonacci roasters, en roasters as it Rudin-Shapiro roaster dy't in fourier
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transformaasje hawwe dy' t hast like �ak is as dat fan in folslein disoarderlik roaster.
Wy litte sjen dat bywannear't wy de ûnderlizzende ûnderlinge dieltsjesôfstân sa kieze
dat dizze oan de twadde oarder Bragg kondysje foldocht, de laser eigenskippen hast
net feroarje yn dy sin dat it systeem op deselde lasermoade wurket as foar it periodike
gefal. De sabeare-en aperiodike struktuur is wol dúdlik sichtber yn fourier ôfbyldingen
boppe de drompel, omt dizze fourier images it patroan fan de fourier transformaasje fan
it dieltsjesroaster sjen litte. Speckle statistyk lit sjen dat de speckle rûmtlike gearhing
hat dy't bepaald wurdt troch de struktuur fan it aperiodike roaster. Ta beslút sette wy
dizze stúdzje troch nei roasters mei in ûnderlizzende ûnderlinge dieltsjesôfstân dy't
net oerienkomt mei de twadde Bragg kondysje en �ne wy nije kondysjes ûnder hokker
laserwurking him foardocht. Wy litte sjen dat sokke systemen ek as laser wurkje kinne
op ekstra diffraksje kondysjes dy't net foarkomme yn periodike roasters mar dy't eigen
binne oan sabeare-kristalline strukturen

126



List of publications

This thesis is based on the following publications:

• Lasing at the band edges of plasmonic lattices, A. H. Schokker and A. F.
Koenderink, Phys. Rev. B90, 155452 (2014).(Chapter 2)

• Statistics of Randomized Plasmonic Lattice Lasers, A. H. Schokker, A. F. Koen-
derink, ACS Photonics.2,1289-1297 (2015).(Chapter 4)

• Lasing in aperiodic systems, A. H. Schokker and A. F. Koenderink, in preparation.
(Chapter 5)

• Band structure in plasmonic lattice lasers, A. H. Schokker, F. van Riggelen,Y.
Hadad and A. Alù, and A. F. Koenderink, in preparation.(Chapter 3)

Other publications by the author:

• Experimental Realization of a Polarization-Independent Ultraviolet/Visible Coax-
ial Plasmonic Metamaterial, M. A. van de Haar, R. Maas, A. H. Schokker, and
A. Polman, Nano Lett.14, 6356-6360 (2014).

• Plasmonic phase-gradient metasurface for spontaneous emission control,
L. Langguth, A. H. Schokker, K. Guo, and A. F. Koenderink, Phys. Rev. B92,
205401:1-9 (2015).

127





Dankwoord

Ik wil een aantal mensen bedanken voor het tot stand komen van dit proefschrift en
voor de �jne tijd die ik gehad heb op AMOLF.

Allereerst wil ik mijn promotor Femius Koenderink bedanken. Vier jaar lang heb
ik onderzoek in je groep mogen doen. Je bent altijd erg betrokken bij je PhDs en
maakt veel tijd voor ze vrij. Als ik je 's avonds emailde stuurde je altijd diezelfde
avond een antwoord terug en als ik je tekst gaf om te corrigeren kreeg ik dit gewoonlijk
binnen een dag terug. Ook geef je je Phd's veel vrijheid voor wat betreft het bepalen
van de richting van hun onderzoek. Je bent erg georganiseerd en werkt ef�cient en
gestructureerd. Zo maak je voor alles een planning, heb je de gewoonte om ook zaken
die niet gerelateerd zijn aan wetenschap of onderzoek in termen van wiskundige termen
te beschrijven, en als iemand een wollige vraag stelt, herhaal je de vraag in een verkorte
en duidelijke vorm. In dit opzicht was je een voorbeeld voor mij en heb ik veel van
je kunnen leren en dit is iets waar ik ook na mijn promotie veel pro�jt van ga hebben.
Daarnaast heb je natuurlijk ontzettend waardevolle input gegeven voor wat betreft mijn
onderzoek, wat bijgedragen heeft aan het tot stand komen van dit proefschrift.

Daarnaast wil ik Albert Polman bedanken. Tijdens mijn master volgde ik je
Nanophotonics college en hierdoor ben ik bij AMOLF terecht gekomen. Dit bleek
achteraf een erg goede keuze en ik heb hier heel veel aan te danken. Ik kan me nog
goed herinneren dat ik na het laatste college van het vakNanophotonicsaan je wilde
vragen of ik mijn masteronderzoek bij jou in de groep kon doen. Het was nog niet
eenvoudig mijn vraag te stellen omdat er een rij studenten klaar stond die doorliep
tot achterin het lokaal die je allemaal iets wilden vragen- je had op veel studenten
indruk gemaakt. Je colleges en de tijd die ik bij je in de groep heb gezeten heb ik erg
gewaardeerd en hebben me veel geleerd.
I would also like to thank James Parsons, who was my direct supervisor during my
masters project. You introduced me to the cleanroom and showed me how to do
nanofabrication. With your help I was able to learn how to use all equipment in the
cleanroom within a few months. Thanks!

Ook wil ik mijn groepsleden uit de groep Resonant Nanophotonics bedanken. In
mijn eerste jaren als promovendus hoorden Martin en Ivana hier bij. Martin, ik kan me
nog goed herinneren dat je in het eerste jaar van het promotieonderzoek tegen me zei

129



Dankwoord

"Hinke, I don't think your samples will ever lase". Je was van nature kritisch, maar
daarmee was je ook altijd degene die de meest scherpe en waardevolle opmerkingen
maakte tijdens groepsbesprekingen, poster sessies en colloquia. Ivana, thanks for your
help in my �rst year and thanks for showing me the Duimelijn set up. Andrej, je
bent een erg �jne collega en stond altijd klaar voor anderen. Je beterschapskaartje
met Spit�re bewaar ik goed. Felipe, many thanks for your support and help during
my PhD. I have very much appreciated your positive and happy attitude and your
buddhist approach to everything. Lutz, thanks for your suggestions and useful input
during groupmeetings. I really enjoyed our collaboration project and even sharing
the lab with you was somehow a fun experience. I can remember you describing the
lab "as if a crazy and blind racoon had entered the lab and trashed it" when I had
�nsihed doing my measurements. I like your creative approach to everything which
have always resulted in very nice ideas for potential new experiments. Cocoa, you may
not have the loudest voice during groupmeetings, but whenever you make a comment it
is always useful. I am happy that you will continue with the Spit�re set up and with the
lasing experiments and I am sure you will do succesfull measurements with it! Abbas,
Hugo, Remmert, Wouter, Mengqi, Allessandro, and Clara thanks for your input during
groupmeetings and presentation practice drill sessions. Floor van Riggelen, jou wil
ik ook bedanken. Je kwam in mijn laatste jaar als masterstudent in de groep onder
mijn begeleiding. Voordat je begon gaven we je de keuze uit 7 onderwerpen om je
onderzoek in te doen. Je koos een onderwerp, ging ermee aan de slag en je maakte je
onderzoek tot een groot succes. Je data bleek zo waardevol te zijn dat je resultaten tot
een artikel leiden. Daarnaast was je gewoon een hele �jne collega om mee samen te
werken en een gezellige kamergenoot! Je resultaten hebben bijgedragen aan het tot
stand komen van hoofdstuk 3.

Said, Vasco, Alexei and Alexandre, and Per many thanks for the scienti�c discus-
sions and useful input! Leontien, bedankt voor de gesprekken gedurende het laatste
jaar van mijn promotieonderzoek. Ik heb je adviezen erg gewaardeerd en ter harte
genomen en dit heeft zeker geholpen bij het tot stand komen van dit proefschrift.

Mijn onderzoek was niet mogelijk geweest zonder de hulp van alle collega's die
hebben meegeholpen in het ontwerpen van de opstelling, het schrijven van software,
en het oplossen van elektronica uitdagingen. Henk-Jan en Ilyah, bedankt voor de
microscoop mount van Spit�re! Jan Zomerdijk en Idsart, bedankt voor de piezo's en
de pulse integrator. Marko Kamp, bedankt voor al je hulp in het lab. Het was een
interessante samenwerking. Ik moet wel een erg lastige promovendus voor je zijn
geweest in het begin. Ik wilde het liefst zoveel mogelijk zelf doen in het lab, terwijl
jij juist zoveel mogelijk wilde helpen. Dit betekent overigens niet dat je niet hebt
bijgedragen aan het experimentele deel van mijn onderzoek. Vooral in de ontwerp fase
heb je erg veel input gegeven. Daarnaast had je altijd wel verhelderende ideeën en
suggesties als ik tegen problemen aan liep en wist je op de éen of andere manier alle
praktische problemen op te lossen. Zo was er een moment waarop mijn camera niet
meer werkte door oververhittingsproblemen. Je pakte een pen, begon daarmee tegen
de ventilator aan te duwen en sindsdien werkte mijn camera weer. MacGyver van het
optische lab! Bedankt dat je mijn paranimf wilt zijn.

130



Dankwoord

Al in de eerste paar maanden van mijn promotie was duidelijk dat de software een
uitdagend project op zich zou zijn, omdat we de ambitie hadden om single shot
metingen te doen en de camera en spectrometer tegelijkertijd met de laser getriggerd
moest worden. Marco Konijnenburg en Sjoerd wil ik graag bedanken voor alle
projectbijeenkomsten en het meedenken hierover. In het bijzonder wil ik Marco Seynen
bedanken voor het schrijven van de software. Niet alleen was er de uitdaging van het
triggeren, maar ook moest de AOM aangestuurd worden, wilden we een automatisch
aangestuurd �lterwiel en zo waren er nog vele andere details. Niet alleen heb je nog
vele opties toegevoegd maar ook stond je altijd klaar als ik iets nieuws toegevoegd
wilde hebben. Als ik metingen met collega's deed waren ze altijd verbaasd over hoe
alles zo eenvoudig automatisch werkte met de spit�re software. Bedankt daarvoor!
In mijn amolf tijd heb ik vele dagen doorgebracht in de cleanroom. Hans Zeijlemaker,
Dimitry Lamers en Andries Lof, bedankt voor alle hulp en ondersteuning! Het maakt
niet uit wat er gebeurde of wat er mis ging, jullie gingen altijd vol goede moed en
optimisme er mee aan de slag en zorgden er altijd voor dat het opgelost werd, of het
nu om een vastgelopen computer ging of een in stukken gezaagd onderdeel van de
Kameleon.
Zoals vele collega's op AMOLF zullen beamen is er om wetenschappelijke successen
te bereiken niet alleen hard werk, goede ideeën en een goede ondersteuning nodig, maar
is goed contact met collega's net zo belangrijk. In de personeelsvereniging heb ik dit
extra mogen ervaren. Nuria, Gesa, Anouk, Roeland, Joris, Bart, Marie Anne en Ronald
bedankt voor de leuke PV tijd. Marie Anne, het bleek dat we een gezamenlijke interesse
in paarden hadden en hier konden we eigenlijk elke dag wel weer opnieuw over praten.
Op collega's had dit een wisselend effect: soms wisten we collega's te enthousiasmeren
en soms haakten ze af. Memorabel in de geschiedenis van AMOLF is die keer dat
we met de PV een personeelsuitje van heel AMOLF naar een paardenmanege hadden
georganiseerd. Evenzo opmerkelijk is dat we dit hadden bewerkstelligd met een
democratische verkiezing in de PV meeting. Achteraf was iedereen erg enthousiast.
Ook hebben we samen vele uren in de cleanroom doorgebracht. De cleanroom technici
werden altijd een beetje huiverig als ze ons samen in de cleanroom zagen, ondanks ons
verweer dat cleanroom malfuncties alleen correleren met gebruikerstijd en niet met hoe
luidruchtig de gebruikers zijn. Daarnaast heb ik vele goede herinneringen aan de keren
dat we hotelkamers hebben gedeeld (gelukkig heb ik je maar éen keer verward met een
wekker), en de keren dat we samen workshops hebben geleid tijdens de AMOLF open
dagen. Ik ga onze gezamenlijke AMOLF tijd missen!
Benjamin, ik wil jou ook bedanken voor de �jne AMOLF tijd. Samen met Marie
Anne zijn we onze Phd op AMOLF begonnen na onze master gedaan te hebben in
utrecht. Je bent altijd in voor een gesprek en ik kan altijd bij je terecht als ik ergens
over wil praten. Je liep vaak mijn kamer binnen om te kletsen over wat je bezig houdt
en wat je gaat doen. Het kwam daarbij regelmatig voor dat je na 1 minuut alweer
vergeten was waarom je eigenlijk mijn kamer binnen liep, maar dat vormde voor jou
geen belemmering om door te blijven praten. Ook heb ik goede herinneringen aan
de AMOLF hardloopgroep, waar jij samen met Mark de drijvende kracht achter was.
Tot slot was je nooit te beroerd om uitgebreide schuine en half rijmende gedichten te

131



Dankwoord

schrijven voor sinterklaas en ervoor te zorgen dat ik elk jaar weer naar voren werd
geroepen.
Freddy Rabouw, Gydo van Zundert en Niek den Harder, jullie waren samen met Marie
Anne en ik deel van het Powertrio. Hoewel we het allemaal altijd te druk hadden om af
te spreken hebben we toch wat avonden vrij kunnen maken om samen te eten. Bedankt
voor de leuke tijd tijdens de studie en daarna!
Jan Bonne Aans, bedankt voor het controleren van de Friese samenvatting van dit
proefschrift! En natuurlijk voor het helpen tijdens de open dag bij de vouwmicroscopen
workshop. Bart Vos, bedankt voor je gezelligheid en je koekjes en natuurlijk bedankt
voor al die keren dat je mijn bureau hebt opgeruimd. Frans Giskens, Marc Duursma
en Ronald Buijs, bedankt dat jullie mee wilden doen met het meisjesteam van Marie
Anne en mij op de FOM sportdag. Het beeld van jullie in roze t-shirts beplakt met
pluche bollen staat bij vele AMOLFers nog op het netvlies gebrand. Frans, je kwam
regelmatig eens mijn kantoor of lab binnen om bij te praten. Bedankt voor je humor
en gezelligheid. Ook wil ik mijn kamergenoten Anouk en Ruben, en mijn voormalige
kamergenoten Daan, Dol�ne, Claire, Jochen en Timmo bedanken voor de gesprekken
en gezelligheid. Daarnaast zijn er nog vele AMOLFers die zorgden voor gezelligheid
tijdens kof�epauzes, borrels en AMOLF uitjes: Mark, Mohammed, Rick, Hinco, Jorik,
Ruben, Boris, Niels, Parisa, Annemarie, Freek, Cristina, Giorgos, Martijn, Toon, en
vele anderen op AMOLF bedankt!

Tot slot wil ik mijn familie en vrienden bedanken. In het bijzonder wil ik mijn
ouders, Hendrik, Marike, Niki en David bedanken voor de steun, hulp en aanmoediging
tijdens mijn onderzoek.

132


